52 resultados para Approche in silico
Optimizing the aquatic toxicity assessment under REACH through an integrated testing strategy (ITS).
Resumo:
To satisfy REACH requirements a high number of data on chemical of interest should be supplied to the European Chemicals Agency. To organize the various kinds of information and help the registrants to choose the best strategy to obtain the needed information limiting at the minimum the use of animal testing, integrated testing strategies (ITSs) schemes can be used. The present work deals with regulatory data requirements for assessing the hazards of chemicals to the aquatic pelagic environment. We present an ITS scheme for organizing and using the complex existing data available for aquatic toxicity assessment. An ITS to optimize the choice of the correct prediction strategy for aquatic pelagic toxicity is described. All existing information (like physico-chemical information), and all the alternative methods (like in silico, in vitro or the acute-to-chronic ratio) are considered. Moreover the weight of evidence approach to combine the available data is included.
Resumo:
The bovine RPCI-42 BAC library was screened to construct a sequence-ready ~4 Mb single contig of 92 BAC clones on BTA 1q12. The contig covers the region between the genes KRTAP8P1 and CLIC6. This genomic segment in cattle is of special interest as it contains the dominant gene responsible for the hornless or polled phenotype in cattle. The construction of the BAC contig was initiated by screening the bovine BAC library with heterologous cDNA probes derived from 12 human genes of the syntenic region on HSA 21q22. Contig building was facilitated by BAC end sequencing and chromosome walking. During the construction of the contig, 165 BAC end sequences and 109 single-copy STS markers were generated. For comparative mapping of 25 HSA 21q22 genes, genomic PCR primers were designed from bovine EST sequences and the gene-associated STSs mapped on the contig. Furthermore, bovine BAC end sequence comparisons against the human genome sequence revealed significant matches to HSA 21q22 and allowed the in silico mapping of two new genes in cattle. In total, 31 orthologues of human genes located on HSA 21q22 were directly mapped within the bovine BAC contig, of which 16 genes have been cloned and mapped for the first time in cattle. In contrast to the existing comparative bovine-human RH maps of this region, these results provide a better alignment and reveal a completely conserved gene order in this 4 Mb segment between cattle, human and mouse. The mapping of known polled linked BTA 1q12 microsatellite markers allowed the integration of the physical contig map with existing linkage maps of this region and also determined the exact order of these markers for the first time. Our physical map and transcript map may be useful for positional cloning of the putative polled gene in cattle.
Resumo:
Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7–72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient R2≥0.93. As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.
Resumo:
A series of N6-bicyclic and N6-(2-hydroxy)cyclopentyl derivatives of adenosine were synthesized as novel A1R agonists and their A1R/A2R selectivity assessed using a simple yeast screening platform. We observed that the most selective, high potency ligands were achieved through N6-adamantyl substitution in combination with 5′-N-ethylcarboxamido or 5′-hydroxymethyl groups. In addition, we determined that 5′-(2-fluoro)thiophenyl derivatives all failed to generate a signaling response despite showing an interaction with the A1R. Some selected compounds were also tested on A1R and A3R in mammalian cells revealing that four of them are entirely A1R-selective agonists. By using in silico homology modeling and ligand docking, we provide insight into their mechanisms of recognition and activation of the A1R. We believe that given the broad tissue distribution, but contrasting signaling profiles, of adenosine receptor subtypes, these compounds might have therapeutic potential.
Resumo:
Classical swine fever virus (CSFV) causes a highly contagious disease in pigs that can range from a severe haemorrhagic fever to a nearly unapparent disease, depending on the virulence of the virus strain. Little is known about the viral molecular determinants of CSFV virulence. The nonstructural protein NS4B is essential for viral replication. However, the roles of CSFV NS4B in viral genome replication and pathogenesis have not yet been elucidated. NS4B of the GPE- vaccine strain and of the highly virulent Eystrup strain differ by a total of seven amino acid residues, two of which are located in the predicted trans-membrane domains of NS4B and were described previously to relate to virulence, and five residues clustering in the N-terminal part. In the present study, we examined the potential role of these five amino acids in modulating genome replication and determining pathogenicity in pigs. A chimeric low virulent GPE- -derived virus carrying the complete Eystrup NS4B showed enhanced pathogenicity in pigs. The in vitro replication efficiency of the NS4B chimeric GPE- replicon was significantly higher than that of the replicon carrying only the two Eystrup-specific amino acids in NS4B. In silico and in vitro data suggest that the N-terminal part of NS4B forms an amphipathic α-helix structure. The N-terminal NS4B with these five amino acid residues is associated with the intracellular membranes. Taken together, this is the first gain-of-function study showing that the N-terminal domain of NS4B can determine CSFV genome replication in cell culture and viral pathogenicity in pigs.
Resumo:
CONTEXT The autosomal dominant form of GH deficiency (IGHD II) is characterized by markedly reduced GH secretion combined with low concentrations of IGF-1 leading to short stature. OBJECTIVE Structure-function analysis of a missense mutation in the GH-1 gene converting codon 76 from leucine (L) to proline (P) yielding a mutant GH-L76P peptide. DESIGN, SETTINGS, AND PATIENTS Heterozygosity for GH-L76P/wt-GH was identified in a nonconsanguineous Spanish family. The index patients, two siblings, a boy and a girl, were referred for assessment of their short stature (-3.2 and -3.8 SD). Their grandmother, father, and aunt were also carrying the same mutation and showed severe short stature; therefore, IGHD II was diagnosed. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-L76P showed a reduced GH secretion (P < .001) after forskolin stimulation when compared with the cells expressing only wt-GH. In silico mutagenesis and molecular dynamics simulations presented alterations of correct folding and mutant stability compared with wt-GH. Therefore, further structural analysis of the GH-L76P mutant was performed using expressed and purified proteins in Escherichia coli by thermofluor assay and fast degradation proteolysis assay. Both assays revealed that the GH-L76P mutant is unstable and misfolded compared to wt-GH confirming the bioinformatic model prediction. CONCLUSIONS This is the first report of a family suffering from short stature caused by IGHD II, which severely affects intracellular GH folding and stability as well as secretion, highlighting the necessity of functional analysis of any GH variant for defining new mechanisms as a cause for IGHD II.
Resumo:
BACKGROUND The human activation peptide of factor XIII (AP-FXIII) comprises the first 37 amino acids of the N-terminus and holds the FXIII in an inactive state. FXIII is activated either proteolytically by cleavage of AP-FXIII by thrombin, or non-proteolytically by high calcium concentrations. OBJECTIVE To investigate the role of AP-FXIII in the expression and stability of FXIII. METHODS We cloned 13 FXIII variants with progressive truncations of AP-FXIII from the N-terminus (delN-FXIII-A), expressed them in mammalian cells, and measured their thermostability, activation, and transglutaminase activity. We also used in silico calculations to analyze the stability of hypothetical delN-FXIII dimers and to identify crucial motifs within AP-FXIII. RESULTS Variants with deletions longer than the first 10 amino acids and an R11Q point mutant were not expressed as proteins. In silico calculations indicated that the sequence (8) FGGR(12) R plays a substantial role in intersubunit interactions in FXIII-A2 homodimers. In agreement with this prediction, the temperature stability of delN-FXIII variants decreased with increasing length of deletion. These results may suggest a role of the N-terminus of AP-FXIII in dimer stability. Substantial sequence homology was found among activation peptides of vertebrate and even invertebrate (crustacean) FXIII-A orthologs, which further supports our conclusion. CONCLUSIONS We conclude that deletion of 11 or more N-terminal amino acids disrupts intersubunit interactions, which may prevent FXIII-A2 homodimer formation. Therefore, AP-FXIII plays an important role in the stability of the FXIII-A2 dimer.