60 resultados para Allosteric modulator
Resumo:
Matrix metalloproteinases (MMPs) are a family of Zn2+-dependent endopeptidases targeting extracellular matrix (ECM) compounds as well as a number of other proteins. Their proteolytic activity acts as an effector mechanism of tissue remodeling in physiologic and pathologic conditions, and as modulator of inflammation. In the context of neuro-inflammatory diseases, MMPs have been implicated in processes such as (a) blood-brain barrier (BBB) and blood-nerve barrier opening, (b) invasion of neural tissue by blood-derived immune cells, (c) shedding of cytokines and cytokine receptors, and (d) direct cellular damage in diseases of the peripheral and central nervous system. This review focuses on the role of MMPs in multiple sclerosis (MS) and bacterial meningitis (BM), two neuro-inflammatory diseases where current therapeutic approaches are insufficient to prevent severe disability in the majority of patients. Inhibition of enzymatic activity may prevent MMP-mediated neuronal damage due to an overactive or deviated immune response in both diseases. Downregulation of MMP release may be the molecular basis for the beneficial effect of IFN-beta and steroids in MS. Instead, synthetic MMP inhibitors offer the possibility to shut off enzymatic activity of already activated MMPs. In animal models of MS and BM, they efficiently attenuated clinical disease symptoms and prevented brain damage due to excessive metalloproteinase activity. However, the required target profile for the therapeutic use of this novel group of compounds in human disease is not yet sufficiently defined and may be different depending on the type and stage of disease. Currently available MMP inhibitors show little target-specificity within the MMP family and may lead to side-effects due to interference with physiological functions of MMPs. Results from human MS and BM indicate that only a restricted number of MMPs specific for each disease is up-regulated. MMP inhibitors with selective target profiles offer the possibility of a more efficient therapy of MS and BM and may enter clinical trials in the near future.
Resumo:
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant's signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores. © 2011 Springer-Verlag.
Resumo:
GABA-A receptors are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. 19 different subunit isoforms have been identified, with the major receptor type in mammalian adult brain consisting of α1, β2, and γ2 subunits. GABA-A receptors are the target of numerous sedating and anxiolytic drugs such as benzodiazepines. The currently known endogenous ligands are GABA, neurosteroids and the endocannabinoid 2- arachidonoyl glycerol (2-AG). The pharmacological properties of this chloride ion channel strictly depend on receptor subunit composition and arrangement. GABA-A receptors bind and are inhibited by epileptogenic agents such as picrotoxin, and cyclodiene insecticides such as dieldrin. We screened aromatic monovalent anions with five-fold symmetry for inhibition of GABA-A receptors. One of the anions, PCCPinhibited currents elicited by GABA with comparable potency as picrotoxin. This inhibition showed all characteristics of an open channel block. The GABA-A receptor ion channel is lined by residues from the M2 membrane-spanning segment. To identify important residues of the pore involved in the interaction with the blocking molecules PCCP-, a mutation scan was performed in combination with subsequent analysis of the expressed mutant proteins using electrophysiological techniques. In a second project we characterised a light-switchable modulator of GABA-A receptors based on propofol. It was my responsibility to investigate the switching kinetics in patch clamp experiments. After its discovery in 1980, propofol has become the most widely used intravenous general anaesthetic. It is commonly accepted that the anaesthesia induced by this unusually lipophilic drug mostly results from potentiation of GABA induced currents. While GABA-A receptors respond to a variety of ligands, they are normally not sensitive towards light. This light sensitivity could be indirectly achieved by using modulators that can be optically switched between an active and an inactive form. We tested an azobenzene derivative of propofol where an aryldiazene unit is directly coupled to the pharmacophore. This molecule was termed azopropofol (AP2). The effect of AP2 on Cl- currents was investigated with electrophysiological techniques using α1β2γ2 GABA-A receptors expressed in Xenopus oocytes and HEK-cells. In the third project we wanted to investigate the functional role of GABA-A receptors in the liver, and their possible involvement in cell proliferation. GABA-A receptors are also found in a wide range of peripheral tissues, including parts of the peripheral nervous system and non-neural tissues such as smooth muscle, the female reproductive system, liver and several cancer tissues. However their precise function in non neuronal or cancerous cells is still unknown. For this purpose we investigated expression, localization and function of the hepatocytes GABA-A receptors in model cell lines and healthy and cancerous hepatocytes.
Resumo:
MicroRNA miR-199a-5p impairs tight junction formation leading to increased urothelial permeability in bladder pain syndrome. Now using transcriptome analysis in urothelial TEU-2 cells we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF and Wnt signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder and we altered its levels in bladder smooth muscle cells (SMC) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size and up-regulated miR-199a-5p targets, including Wnt2. Overexpression of Wnt2 protein or treating SMCs with recombinant Wnt2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of Wnt2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM alpha-actin and SM myosin heavy chain mRNA and protein levels. These changes, as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor (MRTF-A) downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of Wnt-dependent inhibitory Kruppel-like transcription factor 4 (KLF4) in miR-199a-5p overexpressing cells. In contrast, KLF4 was induced in antimiR-expressing cells following the activation of Wnt2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the Wnt2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, relevant for organ remodeling.
Resumo:
OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.
Resumo:
Zinc is an essential micronutrient that is crucial for many vital cellular functions such as DNA and protein synthesis, metabolism, and intracellular signaling. Therefore, the intracellular zinc concentration is tightly regulated by zinc transporters and zinc-binding proteins. The members of the SCL39 transporter family transport zinc into the cytosol. The SLC39A2 (hZIP2) protein is highly expressed in prostate epithelial cells and was found to be involved in prostate cancer development. Thus far, there is no specific modulator available for the SLC39 transporters. The aim of this study was to develop a screening assay for compound screening targeting hZIP2. Employing the pIRES2-DsRed Express 2 bicistronic vector, we detected human ZIP2 expression at the plasma membrane in transiently transfected HEK293 cells. Using the FLIPR Tetra fluorescence plate reader, we demonstrated that ZIP2 transports Cd(2+) with an apparent Km value of 53.96 nM at an extracellular pH of 6.5. The cadmium influx via hZIP2 was inhibited by zinc in a competitive manner. We found that hZIP2 activity can be measured using cadmium in the range of 0.1 to 10 µM with our assay. In summary, for the first time we developed an assay for human ZIP2 that can be adapted to other zinc transporters.
Resumo:
OBJECTIVE Abatacept (ABA), a selective T cell costimulation modulator that binds to CD80 and CD86 on antigen-presenting cells, was investigated for its antiinflammatory effect in treating severe chronic uveitis associated with juvenile idiopathic arthritis (JIA). METHODS Our retrospective study was conducted by members of the Multinational Interdisciplinary Working Group for Uveitis in Childhood (MIWGUC). Patients with JIA who are receiving ABA treatment for active uveitis were included. In all patients, uveitis had been refractory to previous topical and systemic corticosteroids, immunosuppressives, and at least 1 tumor necrosis factor-α inhibitor. A standardized protocol was used to document uveitis (MIWGUC) and arthritis. Baseline visit and visits at 3, 6, 9, and 12 months before and after ABA start were evaluated. Primary outcome measure was defined as achievement of uveitis inactivity; secondary outcome measures were tapering of corticosteroid and/or immunosuppressive treatment, and occurrence of complications. RESULTS In all, 21 patients (16 female) with active uveitis (n = 21) and arthritis (n = 18) were included (mean age 11.8 ± 3.6 yrs). In 7 of 18 patients with active arthritis at baseline, inactivity was achieved following ABA treatment. Uveitis inactivity was achieved in 11 patients, but recurred later in 8 of them, and remained active in another 10 cases. Systemic corticosteroids or immunosuppression were tapered in 3 patients, but uveitis recurred in all of them during further followup. Ocular complications secondary to uveitis were present in 17 patients at baseline, while 3 patients developed new ocular complications during followup. CONCLUSION A sustained response to ABA was uncommon in patients with severe and refractory uveitis.
Resumo:
The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissue. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of a Special Issue entitled 'Fluorescent Neuro-Ligands'.
Resumo:
Positive allosteric modulators of GABAA receptors (GAMs) acting at specific subtypes of GABAA receptors effectively restore compromised spinal pain control in rodents. Studies addressing a similar antihyperalgesic effect in humans are sparse and are hampered by sedative effects of nonselective GAMs available for use in humans. We present results from a randomized controlled double-blind crossover study in 25 healthy volunteers, which addressed potential antihyperalgesic actions of clobazam (CBZ) and clonazepam (CLN) at mildly sedating equianticonvulsive doses. Clobazam was chosen because of its relatively low sedative properties and CLN because of its use in neuropathic pain. Tolterodine (TLT) was used as an active placebo. The primary outcome parameter was a change in the area of cutaneous UVB irradiation-induced secondary hyperalgesia (ASH), which was monitored for 8 hours after drug application. Sedative effects were assessed in parallel to antihyperalgesia. Compared with TLT, recovery from hyperalgesia was significantly faster in the CBZ and CLN groups (P = 0.009). At the time point of maximum effect, the rate of recovery from hyperalgesia was accelerated by CBZ and CLN, relative to placebo by 15.7% (95% confidence interval [CI] 0.8-30.5), P = 0.040, and 28.6% (95% CI 4.5-52.6), P = 0.022, respectively. Active compounds induced stronger sedation than placebo, but these differences disappeared 8 hours after drug application. We demonstrate here that GAMs effectively reduce central sensitization in healthy volunteers. These results provide proof-of-principle evidence supporting efficacy of GAMs as antihyperalgesic agents in humans and should stimulate further research on compounds with improved subtype specificity.
Resumo:
BACKGROUND Nicotine addiction is a major public health problem and is associated with primary glutamatergic dysfunction. We recently showed marked global reductions in metabotropic glutamate receptor type 5 (mGluR5) binding in smokers and recent ex-smokers (average abstinence duration of 25 weeks). The goal of this study was to examine the role of mGluR5 downregulation in nicotine addiction by investigating a group of long-term ex-smokers (abstinence >1.5 years), and to explore associations between mGluR5 binding and relapse in recent ex-smokers. METHODS Images of mGluR5 receptor binding were acquired in 14 long-term ex-smokers, using positron emission tomography with radiolabeled [11C]ABP688, which binds to an allosteric site with high specificity. RESULTS Long-term ex-smokers and individuals who had never smoked showed no differences in mGluR5 binding in any of the brain regions examined. Long-term ex-smokers showed significantly higher mGluR5 binding than recent ex-smokers, most prominently in the frontal cortex (42%) and thalamus (57%). CONCLUSIONS Our findings suggest that downregulation of mGluR5 is a pathogenetic mechanism underlying nicotine dependence and the high relapse rate in individuals previously exposed to nicotine. Therefore, mGluR5 receptor binding appears to be an effective biomarker in smoking and a promising target for the discovery of novel medication for nicotine dependence and other substance-related disorders.
Resumo:
Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.
Resumo:
Monepantel is a recently developed anthelmintic with a novel mode of action. Parasitic nematodes with reduced sensitivity to monepantel have led to the identification of MPTL-1, a ligand-gated ion-channel subunit of the parasitic nematode Haemonchus contortus, as a potential drug target. Homomeric MPTL-1 channels reconstituted in Xenopus oocytes are gated by µM concentrations of betaine and mM concentrations of choline. Measurement of reversal potentials indicated that the channel has a similar conductance for Na(+) and K(+) ions and does not permeate Ca(2+). Concentrations of monepantel (amino-acetonitrile derivative [AAD]-2225) >0.1 μM, but not its inactive enantiomer AAD-2224, induced channel opening in an irreversible manner. Currents elicited by monepantel alone were larger than the maximal current amplitudes achieved with betaine or choline, making monepantel a superagonist. Currents elicited by betaine or choline were allosterically potentiated by nM concentrations of monepantel and to a much smaller degree by AAD-2224. We have also reconstituted the Caenorhabditis elegans homomeric ACR-20 receptor in Xenopus oocytes. The acr-20 sequence has higher similarity to mptl-1 than acr-23, the primary target for monepantel mode of action in C. elegans. The ACR-20 channel is gated similarly as MPTL-1. Monepantel, but not AAD-2224, was able to induce channel opening in an irreversible manner at similar concentrations as for MPTL-1. Interestingly, the allosteric potentiation measured in the presence of betaine was much smaller than in MPTL-1 receptors. Together, these results establish the mode of action of monepantel in H. contortus and contribute to our understanding of the mode of action of this anthelmintic.
Resumo:
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs such as the benzodiazepines. Benzodiazepines act at the high-affinity binding site at the α+/γ- subunit interface. Previously, an additional low affinity binding site for diazepam located in the transmembrane (TM) domain has been described. The compound SJM-3 was recently identified in a prospective screening of ligands for the benzodiazepine binding site and investigated for its site of action. We determined the binding properties of SJM-3 at GABAA receptors recombinantly expressed in HEK-cells using radioactive ligand binding assays. Impact on function was assessed in Xenopus laevis oocytes with electrophysiological experiments using the two-electrode voltage clamp method. SJM-3 was shown to act as an antagonist at the α+/γ- site. At the same time it strongly potentiated GABA currents via the binding site for diazepam in the transmembrane domain. Mutation of a residue in M2 of the α subunit strongly reduced receptor modulation by SJM-3 and a homologous mutation in the β subunit abolished potentiation. SJM-3 acts as a more efficient modulator than diazepam at the site in the trans-membrane domain. In contrast to low concentrations of benzodiazepines, SJM-3 modulates both synaptic and extrasynaptic receptors. A detailed exploration of the membrane site may provide the basis for the design and identification of subtype-selective modulatory drugs.
Resumo:
PURPOSE In acute myeloid leukemia (AML), the transcription factors CEBPA and KLF4 as well as the universal tumor suppressor p53 are frequently deregulated. Here, we investigated the extent of dysregulation, the molecular interactions, and the mechanisms involved. EXPERIMENTAL DESIGN One hundred ten AML patient samples were analyzed for protein levels of CEBPA, KLF4, p53, and p53 modulators. Regulation of CEBPA gene expression by KLF4 and p53 or by chemical p53 activators was characterized in AML cell lines. RESULTS We found that CEBPA gene transcription can be directly activated by p53 and KLF4, suggesting a p53-KLF4-CEBPA axis. In AML patient cells, we observed a prominent loss of p53 function and concomitant reduction of KLF4 and CEBPA protein levels. Assessment of cellular p53 modulator proteins indicated that p53 inactivation in leukemic cells correlated with elevated levels of the nuclear export protein XPO1/CRM1 and increase of the p53 inhibitors MDM2 and CUL9/PARC in the cytoplasm. Finally, restoring p53 function following treatment with cytotoxic chemotherapy compounds and p53 restoring non-genotoxic agents induced CEBPA gene expression, myeloid differentiation, and cell-cycle arrest in AML cells. CONCLUSIONS The p53-KLF4-CEBPA axis is deregulated in AML but can be functionally restored by conventional chemotherapy and novel p53 activating treatments. Clin Cancer Res; 22(3); 746-56. ©2015 AACR.
Resumo:
Chemerin is a well-established modulator of immune cell function and its serum levels are induced in inflammatory diseases. Liver cirrhosis is associated with inflammation which is aggravated by portal hypertension. The objective of this study was to evaluate whether chemerin is induced in patients with more severe liver cirrhosis and portal hypertension. Chemerin has been measured by ELISA in the portal venous serum (PVS), systemic venous serum (SVS) and hepatic venous serum (HVS) of 45 patients with liver cirrhosis. Chemerin is higher in HVS compared to PVS in accordance with our recently published finding. SVS, HVS and PVS chemerin decline in patients with more advanced liver injury defined by the CHILD-PUGH score. Hepatic chemerin has been determined in a small cohort and is similarly expressed in normal and cirrhotic liver. MELD score and serum markers of liver and kidney function do not correlate with chemerin. There is a positive correlation of chemerin in all compartments with Quick prothrombin time and of SVS chemerin with systolic blood pressure. PVS chemerin is induced in patients with modest/massive ascites but this does not translate into higher HVS and SVS levels. Chemerin is not associated with variceal size. Reduction of portal pressure by transjugular intrahepatic portosystemic shunt does not affect chemerin levels. These data show that low chemerin in patients with more severe liver cirrhosis is associated with reduced Quick prothrombin time.