47 resultados para Algorithms to Activity of the Crew


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Atrial tachycardias (AT) during or after ablation of atrial fibrillation frequently pose a diagnostic challenge. We hypothesized that both the patterns and the timing of coronary sinus (CS) activation could facilitate AT mapping. METHODS AND RESULTS A total of 140 consecutive postpersistent atrial fibrillation ablation patients with sustained AT were investigated by conventional mapping. CS activation pattern was defined as chevron or reverse chevron when the activations recorded on both the proximal and the distal CS dipoles were latest or earliest, respectively. The local activation of mid-CS was timed with reference to Ppeak-Ppeak (P-P) interval in lead V1. A ratio, mid-CS activation time to AT cycle length, was computed. Of 223 diagnosed ATs, 124 were macroreentrant (56%) and 99 were centrifugal (44%). When CS activation was chevron/reverse chevron (n=44; 20%), macroreentries were mostly roof dependent. With reference to P-P interval, mid-CS activation timing showed specific consistency for peritricuspid and perimitral AT. Proximal to distal CS activation pattern and mid-CS activation at 50% to 70% of the P-P interval (n=30; 13%) diagnosed peritricuspid AT with 81% sensitivity and 89% specificity. Distal to proximal CS activation and mid-CS activation at 10% to 40% of the P-P interval (n=44; 20%) diagnosed perimitral AT with 88% sensitivity and 75% specificity. CONCLUSIONS The analysis of the patterns and timing of CS activation provides a rapid stratification of most likely macroreentrant ATs and points toward the likely origin of centrifugal ATs. It can be included in a stepwise diagnostic approach to rapidly select the most critical mapping maneuvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration