101 resultados para Adenosine A(1) receptor
Resumo:
The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB(1)) and CB(2) receptors. Although the CB(1) receptor is responsible for the psychomodulatory effects, activation of the CB(2) receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis. Here, we report that the widespread plant volatile (E)-beta-caryophyllene [(E)-BCP] selectively binds to the CB(2) receptor (K(i) = 155 +/- 4 nM) and that it is a functional CB(2) agonist. Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis. Molecular docking simulations have identified a putative binding site of (E)-BCP in the CB(2) receptor, showing ligand pi-pi stacking interactions with residues F117 and W258. Upon binding to the CB(2) receptor, (E)-BCP inhibits adenylate cylcase, leads to intracellular calcium transients and weakly activates the mitogen-activated kinases Erk1/2 and p38 in primary human monocytes. (E)-BCP (500 nM) inhibits lipopolysaccharide (LPS)-induced proinflammatory cytokine expression in peripheral blood and attenuates LPS-stimulated Erk1/2 and JNK1/2 phosphorylation in monocytes. Furthermore, peroral (E)-BCP at 5 mg/kg strongly reduces the carrageenan-induced inflammatory response in wild-type mice but not in mice lacking CB(2) receptors, providing evidence that this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB(2) receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis.
Resumo:
Although chemotherapy for breast cancer can increase inflammation, few studies have examined predictors of this phenomenon. This study examined potential contributions of demographics, disease characteristics, and treatment regimens to markers of inflammation in response to chemotherapy for breast cancer. Thirty-five women with stage I-III-A breast cancer (mean age 50 years) were studied prior to cycle 1 and prior to cycle 4 of anthracycline-based chemotherapy. Circulating levels of inflammatory markers with high relevance to breast cancer were examined, including C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-alpha), Interleukin-1 receptor antagonist (IL1-RA), vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-1 (sICAM-1), Interleukin- (IL-6), soluble P-selectin (sP-selectin), and von Willebrand factor (vWf). Chemotherapy was associated with elevations in VEGF (p < or = 0.01), sICAM-1 (p < or = 0.01), sP-selectin (p < or = 0.02) and vWf (p < or = 0.05). Multiple regression analysis controlling for age and body mass index (BMI) showed that higher post-chemotherapy levels of inflammation were consistently related to higher pre-chemotherapy levels of inflammation (ps < or =0.05) as well as to certain disease characteristics. Post-chemotherapy IL-6 levels were higher in patients who had larger tumors (p < or = 0.05) while post-chemotherapy VEGF levels were higher in patients who had smaller tumors (p < or = 0.05). Post-chemotherapy sP-selectin levels were highest in women who had received epirubicin, cytoxan, 5-fluorouracil chemotherapy (p < or = 0.01). These findings indicate that chemotherapy treatment can be associated with elevations in certain markers of inflammation, particularly markers of endothelial and platelet activation. Inflammation in response to chemotherapy is most significantly related to inflammation that existed prior to chemotherapy but also potentially to treatment regimen and to certain disease characteristics.
Resumo:
BACKGROUND: Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), produced by endotoxin-activated Kupffer cells, play a key role in the pathogenesis of alcoholic liver cirrhosis (ALC). Alleles TNFA -238A, IL1B -31T and variant IL1RN*2 of repeat polymorphism in the gene encoding the IL-1 receptor antagonist increase production of TNF-alpha and IL-1beta, respectively. Alleles CD14 -159T, TLR4 c.896G and TLR4 c.1196T modify activation of Kupffer cells by endotoxin. We confirmed the published associations between these common variants and genetic predisposition to ALC by means of a large case-control association study conducted on two Central European populations. METHODS: The study population comprised a Czech sample of 198 ALC patients and 370 controls (MONICA project), and a German sample of 173 ALC patients and 331 controls (KORA-Augsburg), and 109 heavy drinkers without liver disease. RESULTS: Single locus analysis revealed no significant difference between patients and controls in all tested loci. Diplotype [IL1RN 2/ 2; IL1B -31T+] was associated with increased risk of ALC in the pilot study, but not in the validation samples. CONCLUSIONS: Although cytokine mediated immune reactions play a role in the pathogenesis of ALC, hereditary susceptibility caused by variants in the corresponding genes is low in Central European populations.
Resumo:
BACKGROUND: Unlike most antihyperglycaemic drugs, glucagon-like peptide-1 (GLP-1) receptor agonists have a glucose-dependent action and promote weight loss. We compared the efficacy and safety of liraglutide, a human GLP-1 analogue, with exenatide, an exendin-based GLP-1 receptor agonist. METHODS: Adults with inadequately controlled type 2 diabetes on maximally tolerated doses of metformin, sulphonylurea, or both, were stratified by previous oral antidiabetic therapy and randomly assigned to receive additional liraglutide 1.8 mg once a day (n=233) or exenatide 10 microg twice a day (n=231) in a 26-week open-label, parallel-group, multinational (15 countries) study. The primary outcome was change in glycosylated haemoglobin (HbA(1c)). Efficacy analyses were by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00518882. FINDINGS: Mean baseline HbA(1c) for the study population was 8.2%. Liraglutide reduced mean HbA(1c) significantly more than did exenatide (-1.12% [SE 0.08] vs -0.79% [0.08]; estimated treatment difference -0.33; 95% CI -0.47 to -0.18; p<0.0001) and more patients achieved a HbA(1c) value of less than 7% (54%vs 43%, respectively; odds ratio 2.02; 95% CI 1.31 to 3.11; p=0.0015). Liraglutide reduced mean fasting plasma glucose more than did exenatide (-1.61 mmol/L [SE 0.20] vs -0.60 mmol/L [0.20]; estimated treatment difference -1.01 mmol/L; 95% CI -1.37 to -0.65; p<0.0001) but postprandial glucose control was less effective after breakfast and dinner. Both drugs promoted similar weight losses (liraglutide -3.24 kg vs exenatide -2.87 kg). Both drugs were well tolerated, but nausea was less persistent (estimated treatment rate ratio 0.448, p<0.0001) and minor hypoglycaemia less frequent with liraglutide than with exenatide (1.93 vs 2.60 events per patient per year; rate ratio 0.55; 95% CI 0.34 to 0.88; p=0.0131; 25.5%vs 33.6% had minor hypoglycaemia). Two patients taking both exenatide and a sulphonylurea had a major hypoglycaemic episode. INTERPRETATION: Liraglutide once a day provided significantly greater improvements in glycaemic control than did exenatide twice a day, and was generally better tolerated. The results suggest that liraglutide might be a treatment option for type 2 diabetes, especially when weight loss and risk of hypoglycaemia are major considerations.
Resumo:
PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) is a molecular target for imaging of pancreatic beta cells. We compared the ability of [Nle(14),Lys(40)(Ahx-NODAGA-(64)Cu)NH2]-exendin-4 ([(64)Cu]NODAGA-exendin-4) and [Nle(14),Lys(40)(Ahx-NODAGA-(68)Ga)NH2]-exendin-4 ([(68)Ga]NODAGA-exendin-4) to detect native pancreatic islets in rodents. PROCEDURES The stability, lipophilicity and affinity of the radiotracers to the GLP-1R were determined in vitro. The biodistribution of the tracers was assessed using autoradiography, ex vivo biodistribution and PET imaging. Estimates for human radiation dosimetry were calculated. RESULTS We found GLP-1R-specific labelling of pancreatic islets. However, the pancreas could not be visualised in PET images. The highest uptake of the tracers was observed in the kidneys. Effective dose estimates for [(64)Cu]NODAGA-exendin-4 and [(68)Ga]NODAGA-exendin-4 were 0.144 and 0.012 mSv/MBq, respectively. CONCLUSION [(64)Cu]NODAGA-exendin-4 might be more effective for labelling islets than [(68)Ga]NODAGA-exendin-4. This is probably due to the lower specific radioactivity of [(68)Ga]NODAGA-exendin-4 compared to [(64)Cu]NODAGA-exendin-4. The radiation dose in the kidneys may limit the use of [(64)Cu]NODAGA-exendin-4 as a clinical tracer.
Resumo:
BACKGROUND Single nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell (HSCT) but not solid organ transplant (SOT) recipients. METHODS 24 SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidneys, 190 liver, 102 lungs, 79 hearts, 15 other) from the Swiss Transplant Cohort Study. Association between SNPs and the endpoint were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by ELISA in PBMCs from healthy volunteers and correlated with relevant genotypes. RESULTS Mold colonization (N=45) and proven/probable IMI (N=26) were associated with polymorphisms in interleukin-1 beta (IL1B, rs16944; log-rank test, recessive mode, colonization P=0.001 and IMI P=0.00005), interleukin-1 receptor antagonist (IL1RN, rs419598; P=0.01 and P=0.02) and β-defensin-1 (DEFB1, rs1800972; P=0.001 and P=0.0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (IL1B rs16944 P=0.002; DEFB1 rs1800972 P=0.01). Presence of two copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced IL-1β and TNFα secretion by PBMCs. CONCLUSIONS Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratification.
Resumo:
White markings and spotting patterns in animal species are thought to be a result of the domestication process. They often serve for the identification of individuals but sometimes are accompanied by complex pathological syndromes. In the Swiss Franches-Montagnes horse population, white markings increased vastly in size and occurrence during the past 30 years, although the breeding goal demands a horse with as little depigmented areas as possible. In order to improve selection and avoid more excessive depigmentation on the population level, we estimated population parameters and breeding values for white head and anterior and posterior leg markings. Heritabilities and genetic correlations for the traits were high (h(2) > 0.5). A strong positive correlation was found between the chestnut allele at the melanocortin-1-receptor gene locus and the extent of white markings. Segregation analysis revealed that our data fit best to a model including a polygenic effect and a biallelic locus with a dominant-recessive mode of inheritance. The recessive allele was found to be the white trait-increasing allele. Multilocus linkage disequilibrium analysis allowed the mapping of the putative major locus to a chromosomal region on ECA3q harboring the KIT gene.
Resumo:
Calcium channel blockers (CCBs) are prescribed to patients with Marfan syndrome for prophylaxis against aortic aneurysm progression, despite limited evidence for their efficacy and safety in the disorder. Unexpectedly, Marfan mice treated with CCBs show accelerated aneurysm expansion, rupture, and premature lethality. This effect is both extracellular signal-regulated kinase (ERK1/2) dependent and angiotensin-II type 1 receptor (AT1R) dependent. We have identified protein kinase C beta (PKCβ) as a critical mediator of this pathway and demonstrate that the PKCβ inhibitor enzastaurin, and the clinically available anti-hypertensive agent hydralazine, both normalize aortic growth in Marfan mice, in association with reduced PKCβ and ERK1/2 activation. Furthermore, patients with Marfan syndrome and other forms of inherited thoracic aortic aneurysm taking CCBs display increased risk of aortic dissection and need for aortic surgery, compared to patients on other antihypertensive agents.
Resumo:
UNLABELLED Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity.
Resumo:
The adenosine A2a receptors (A2aR) play an important role in the purinergic mediated neuromodulation. The presence of A2aR in the brain is well established. In contrast, little is known about their expression in the periphery. The purpose of this study was to investigate the expression of A2aR gene in the autonomic (otic, sphenopalatine, ciliary, cervical superior ganglia and carotid body) and in the dorsal root ganglia of normal rat. Hybridization histochemistry with S35-labelled radioactive oligonucleotide probes was used. An expression of A2aR gene was found in the large neuronal cells of the rat dorsal root ganglia. The satellite cells showed no expression of A2aR gene. In the superior cervical ganglion, isolated ganglion cells expressed A2aR. In the carotid body clusters of cells with a strong A2aR gene expression were found. In contrast, the ciliary and otic ganglia did not expressed A2aR gene, and only few small sized A2aR expressing cells were demonstrated in the sphenopalatine ganglion. The discrete distribution of A2aR gene expression in the peripheral nervous system speaks for a role of this receptor in the purinergic modulation of sensory information as well as in the sympathetic nervous system.
Resumo:
Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ). PGC-1 enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1 levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1 -mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1 and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1 enhances lipogenesis in skeletal muscle through liver X receptor -dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1 and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1 coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.
Resumo:
Cannabinoid receptors CB1 and CB2 are expressed in the liver, but their regulation in fatty hepatocytes is poorly documented. The aim of this study was to investigate the effects of selective CB1 or CB2 agonists on the expression of key regulators of lipid metabolism.
Resumo:
Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.
Resumo:
Postmenopausal women with hormone receptor-positive early breast cancer have persistent, long-term risk of breast-cancer recurrence and death. Therefore, trials assessing endocrine therapies for this patient population need extended follow-up. We present an update of efficacy outcomes in the Breast International Group (BIG) 1-98 study at 8·1 years median follow-up.
Resumo:
The Breast International Group (BIG) 1-98 study is a four-arm trial comparing 5 years of monotherapy with tamoxifen or with letrozole or with sequences of 2 years of one followed by 3 years of the other for postmenopausal women with endocrine-responsive early invasive breast cancer. From 1998 to 2003, BIG -98 enrolled 8,010 women. The enhanced design f the trial enabled two complementary analyses of efficacy and safety. Collection of tumor specimens further enabled treatment comparisons based on tumor biology. Reports of BIG 1-98 should be interpreted in relation to each individual patient as she weighs the costs and benefits of available treatments.