78 resultados para Accumulation curves
Resumo:
The objective of this study was to examine the association of pharyngeal lymphoid hyperplasia (PLH), recurrent laryngeal neuropathy (RLN), mucus accumulation (MA) score and tracheobronchial secretion neutrophil percentage (TBS-N) with rider-assessed performance in sport horses. Airway endoscopy scores, tracheobronchial secretion cytology, rider-assessed general impression and willingness to perform were investigated in 171 top-level sport horses. Increased MA appears to be associated with poor willingness to perform in sport horses. Older horses had decreased PLH scores and increased TBS-N. Mucus accumulation scores > or =3 were associated with increased odds (mean 9.92; upper and lower 95% confidence intervals: 1.5-64.6) of poor rather than excellent willingness to perform. A TBS-N of 20-50% compared with <20% was associated with decreased odds (median 0.11; upper and lower 95% CI: 0.02-0.66) of poor rather than excellent willingness to perform. In addition, horses with an RLN grade > or =2 had significantly higher odds for giving a poorer general impression and willingness to perform. This finding, however, must be interpreted with caution, since only two horses had significant RLN (grade > or =3).
Resumo:
Recent coccoliths from 74 surface sediment samples recovered from the southeastern Pacific off Chile were examined quantitatively to investigate modern regional gradients of sea surface productivity and temperature. All findings are based on coccolith accumulation rates. Therefore an approach was designed to estimate recent sedimentation rates based on 210Pb and bulk chemistry analyses of the same set of surface samples. Highest total coccolith accumulation rates were found off north-central Chile, where seasonal upwelling takes place. Based on a multiple linear regression between calculated coccolith accumulation rates and World Ocean Atlas derived sea surface temperatures, a calibration model to reconstruct annual average temperatures of the uppermost 75 m of the water column is provided. The model was cross-validated and the SST estimates were compared with SST observed and SST estimates based on diatoms and planktonic foraminifera, showing a good correlation.
Resumo:
We examine the board overlap among firms listed in Switzerland. Collusion, managerial entrenchment, and financial participation cannot explain it. The overlap appears to be induced by banks and by the accumulation of seats by the most popular directors. We also document that seat accumulation is negatively related to firm value, possibly because of the conflicts of interest that multiple directorships induce and the time constraints directors face. Contrary to popular beliefs, however, the directors of traded firms do not generally hold more than one mandate in other traded firms. They do hold multiple seats in non-traded firms.
Resumo:
Batrachochytrium dendrobatidis (Bd) is a fungus infecting the skin of amphibians. On metamorphosing animals the infection is difficult to detect because of the limited information concerning the location of Bd on the animals during this stage. Histological investigation revealed that Bd accumulated on the reabsorbing tail of metamorphosing animals. This observation may facilitate the detection of Bd in metamorphosing amphibians.
Resumo:
AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.
Resumo:
Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000–2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16'40"S, 73°21'14"W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16 ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4–7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.
Resumo:
Changes in Greenland accumulation and the stability in the relationship between accumulation variability and large-scale circulation are assessed by performing time-slice simulations for the present day, the preindustrial era, the early Holocene, and the Last Glacial Maximum (LGM) with a comprehensive climate model. The stability issue is an important prerequisite for reconstructions of Northern Hemisphere atmospheric circulation variability based on accumulation or precipitation proxy records from Greenland ice cores. The analysis reveals that the relationship between accumulation variability and large-scale circulation undergoes a significant seasonal cycle. As the contributions of the individual seasons to the annual signal change, annual mean accumulation variability is not necessarily related to the same atmospheric circulation patterns during the different climate states. Interestingly, within a season, local Greenland accumulation variability is indeed linked to a consistent circulation pattern, which is observed for all studied climate periods, even for the LGM. Hence, it would be possible to deduce a reliable reconstruction of seasonal atmospheric variability (e.g., for North Atlantic winters) if an accumulation or precipitation proxy were available that resolves single seasons. We further show that the simulated impacts of orbital forcing and changes in the ice sheet topography on Greenland accumulation exhibit strong spatial differences, emphasizing that accumulation records from different ice core sites regarding both interannual and long-term (centennial to millennial) variability cannot be expected to look alike since they include a distinct local signature. The only uniform signal to external forcing is the strong decrease in Greenland accumulation during glacial (LGM) conditions and an increase associated with the recent rise in greenhouse gas concentrations.
Resumo:
Air and water stable isotope measurements from four Greenland deep ice cores (GRIP, GISP2, NGRIP and NEEM) are investigated over a series of Dansgaard–Oeschger events (DO 8, 9 and 10), which are representative of glacial millennial scale variability. Combined with firn modeling, air isotope data allow us to quantify abrupt temperature increases for each drill site (1σ = 0.6 °C for NEEM, GRIP and GISP2, 1.5 °C for NGRIP). Our data show that the magnitude of stadial–interstadial temperature increase is up to 2 °C larger in central and North Greenland than in northwest Greenland: i.e., for DO 8, a magnitude of +8.8 °C is inferred, which is significantly smaller than the +11.1 °C inferred at GISP2. The same spatial pattern is seen for accumulation increases. This pattern is coherent with climate simulations in response to reduced sea-ice extent in the Nordic seas. The temporal water isotope (δ18O)–temperature relationship varies between 0.3 and 0.6 (±0.08) ‰ °C−1 and is systematically larger at NEEM, possibly due to limited changes in precipitation seasonality compared to GISP2, GRIP or NGRIP. The gas age−ice age difference of warming events represented in water and air isotopes can only be modeled when assuming a 26% (NGRIP) to 40% (GRIP) lower accumulation than that derived from a Dansgaard–Johnsen ice flow model.
Resumo:
Rice has the predilection to take up arsenic in the form of methylated arsenic (o-As) and inorganic arsenic species (i-As). Plants defend themselves using i-As efflux systems and the production of phytochelatins (PCs) to complex i-As. Our study focused on the identification and quantification of phytochelatins by HPLC-ICP-MS/ESI-MS, relating them to the several variables linked to As exposure. GSH, 11 PCs, and As–PC complexes from the roots of six rice cultivars (Italica Carolina, Dom Sofid, 9524, Kitrana 508, YRL-1, and Lemont) exposed to low and high levels of i-As were compared with total, i-As, and o-As in roots, shoots, and grains. Only Dom Sofid, Kitrana 508, and 9524 were found to produce higher levels of PCs even when exposed to low levels of As. PCs were only correlated to i-As in the roots (r=0.884, P <0.001). However, significant negative correlations to As transfer factors (TF) roots–grains (r= –0.739, P <0.05) and shoots–grains (r= –0.541, P <0.05), suggested that these peptides help in trapping i-As but not o-As in the roots, reducing grains’ i-As. Italica Carolina reduced i-As in grains after high exposure, where some specific PCs had a special role in this reduction. In Lemont, exposure to elevated levels of i-As did not result in higher i-As levels in the grains and there were no significant increases in PCs or thiols. Finally, the high production of PCs in Kitrana 508 and Dom Sofid in response to high As treatment did not relate to a reduction of i-As in grains, suggesting that other mechanisms such as As–PC release and transport seems to be important in determining grain As in these cultivars.
Resumo:
Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+) T cells and/or CD4(-) cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/-) CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS)-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/-) CD4 T cell accumulation in colonic lamina propria (cLP) was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/-) mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/-) CD45RB(high) CD4 T cells into RAG(-/-) hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.
Resumo:
Latrepirdine (Dimebon; dimebolin) is a neuroactive compound that was associated with enhanced cognition, neuroprotection and neurogenesis in laboratory animals, and has entered phase II clinical trials for both Alzheimer's disease and Huntington's disease (HD). Based on recent indications that latrepirdine protects cells against cytotoxicity associated with expression of aggregatable neurodegeneration-related proteins, including Aβ42 and γ-synuclein, we sought to determine whether latrepirdine offers protection to Saccharomyces cerevisiae. We utilized separate and parallel expression in yeast of several neurodegeneration-related proteins, including α-synuclein (α-syn), the amyotrophic lateral sclerosis-associated genes TDP43 and FUS, and the HD-associated protein huntingtin with a 103 copy-polyglutamine expansion (HTT gene; htt-103Q). Latrepirdine effects on α-syn clearance and toxicity were also measured following treatment of SH-SY5Y cells or chronic treatment of wild-type mice. Latrepirdine only protected yeast against the cytotoxicity associated with α-syn, and this appeared to occur via induction of autophagy. We further report that latrepirdine stimulated the degradation of α-syn in differentiated SH-SY5Y neurons, and in mouse brain following chronic administration, in parallel with elevation of the levels of markers of autophagic activity. Ongoing experiments will determine the utility of latrepirdine to abrogate α-syn accumulation in transgenic mouse models of α-syn neuropathology. We propose that latrepirdine may represent a novel scaffold for discovery of robust pro-autophagic/anti-neurodegeneration compounds, which might yield clinical benefit for synucleinopathies including Parkinson's disease, Lewy body dementia, rapid eye movement (REM) sleep disorder and/or multiple system atrophy, following optimization of its pro-autophagic and pro-neurogenic activities.