62 resultados para ARABIDOPSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many organisms, including plants, nucleic acid bases and derivatives such as caffeine are transported across the plasma membrane. Cytokinins, important hormones structurally related to adenine, are produced mainly in root apices, from where they are translocated to shoots to control a multitude of physiological processes. Complementation of a yeast mutant deficient in adenine uptake (fcy2) with an Arabidopsis cDNA expression library enabled the identification of a gene, AtPUP1 (for Arabidopsis thaliana purine permease1), belonging to a large gene family (AtPUP1 to AtPUP15) encoding a new class of small, integral membrane proteins. AtPUP1 transports adenine and cytosine with high affinity. Uptake is energy dependent, occurs against a concentration gradient, and is sensitive to protonophores, potentially indicating secondary active transport. Competition studies show that purine derivatives (e.g., hypoxanthine), phytohormones (e.g., zeatin and kinetin), and alkaloids (e.g., caffeine) are potent inhibitors of adenine and cytosine uptake. Inhibition by cytokinins is competitive (competitive inhibition constant Ki = 20 to 35 μM), indicating that cytokinins are transported by this system. AtPUP1 is expressed in all organs except roots, indicating that the gene encodes an uptake system for root-derived nucleic acid base derivatives in shoots or that it exports nucleic acid base analogs from shoots by way of the phloem. The other family members may have different affinities for nucleic acid bases, perhaps functioning as transporters for nucleosides, nucleotides, and their derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In transgenic Arabidopsis a patatin class I promoter from potato is regulated by sugars and proline (Pro), thus integrating signals derived from carbon and nitrogen metabolism. In both cases a signaling cascade involving protein phosphatases is involved in induction. Other endogenous genes are also regulated by both Pro and carbohydrates. Chalcone synthase (CHS) gene expression is induced by both, whereas the Pro biosynthetic Δ1-pyrroline-5-carboxylate synthetase (P5CS) is induced by high Suc concentrations but repressed by Pro, and Pro dehydrogenase (ProDH) is inversely regulated. The mutantrsr1-1, impaired in sugar dependent induction of the patatin promoter, is hypersensitive to low levels of external Pro and develops autofluorescence and necroses. Toxicity of Pro can be ameliorated by salt stress and exogenously supplied metabolizable carbohydrates. The rsr1-1 mutant shows a reduced response regarding sugar induction of CHS andP5CS expression. ProDH expression is de-repressed in the mutant but still down-regulated by sugar. Pro toxicity seems to be mediated by the degradation intermediate Δ1-pyrroline-5-carboxylate. Induction of the patatin promoter by carbohydrates and Pro, together with the Pro hypersensitivity of the mutant rsr1-1, demonstrate a new link between carbon/nitrogen and stress responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9±1.7 and 1.7±0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H+-amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have non-overlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots. Pulse labeling with 59Fe through the root system shows that the irt1 mutation reduces iron accumulation in the shoots. Short-term labeling with 65Zn reveals no alteration in spatial distribution of zinc, but indicates a lower level of zinc accumulation. In comparison to wild-type, the irt1 mutant responds to iron and zinc deprivation by altered expression of certain zinc and iron transporter genes, which results in the activation of ZIP1 in shoots, reduction of ZIP2 transcript levels in roots, and enhanced expression of IRT2 in roots. These data support the conclusion that IRT1 is an essential metal transporter required for proper development and regulation of iron and zinc homeostasis in Arabidopsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The Arabidopsis FILAMENTOUS FLOWER (FIL) gene encodes a YABBY (YAB) family putative transcription factor that has been implicated in specifying abaxial cell identities and thus regulating organ polarity of lateral organs. In contrast to double mutants of fil and other YAB genes, fil single mutants display mainly floral and inflorescence morphological defects that do not reflect merely a loss of abaxial identity. Recently, FIL and other YABs have been shown to regulate meristem organization in a non-cell-autonomous manner. In a screen for new mutations affecting floral organ morphology and development, we have identified a novel allele of FIL, fil-9 and characterized its floral and meristem phenotypes. Results The fil-9 mutation results in highly variable disruptions in floral organ numbers and size, partial homeotic transformations, and in defective inflorescence organization. Examination of meristems indicates that both fil-9 inflorescence and floral meristems are enlarged as a result of an increase in cell number, and deformed. Furthermore, primordia emergence from these meristems is disrupted such that several primordia arise simultaneously instead of sequentially. Many of the organs produced by the inflorescence meristems are filamentous, yet they are not considered by the plant as flowers. The severity of both floral organs and meristem phenotypes is increased acropetally and in higher growth temperature. Conclusions Detailed analysis following the development of fil-9 inflorescence and flowers throughout flower development enabled the drawing of a causal link between multiple traits of fil-9 phenotypes. The study reinforces the suggested role of FIL in meristem organization. The loss of spatial and temporal organization of fil-9 inflorescence and floral meristems presumably leads to disrupted cell allocation to developing floral organs and to a blurring of organ whorl boundaries. This disruption is reflected in morphological and organ identity aberrations of fil-9 floral organs and in the production of filamentous organs that are not perceived as flowers. Here, we show the role of FIL in reproductive meristem development and emphasize the potential of using fil mutants to study mersitem organization and the related effects on flower morphogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a majority of species, leaf development is thought to proceed in a bilaterally symmetric fashion without systematic asymmetries. This is despite the left and right sides of an initiating primordium occupying niches that differ in their distance from sinks and sources of auxin. Here, we revisit an existing model of auxin transport sufficient to recreate spiral phyllotactic patterns and find previously overlooked asymmetries between auxin distribution and the centers of leaf primordia. We show that it is the direction of the phyllotactic spiral that determines the side of the leaf these asymmetries fall on. We empirically confirm the presence of an asymmetric auxin response using a DR5 reporter and observe morphological asymmetries in young leaf primordia. Notably, these morphological asymmetries persist in mature leaves, and we observe left-right asymmetries in the superficially bilaterally symmetric leaves of tomato (Solanum lycopersicum) and Arabidopsis thaliana that are consistent with modeled predictions. We further demonstrate that auxin application to a single side of a leaf primordium is sufficient to recapitulate the asymmetries we observe. Our results provide a framework to study a previously overlooked developmental axis and provide insights into the developmental constraints imposed upon leaf morphology by auxin-dependent phyllotactic patterning.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heritable variation in plant phenotypes, and thus potential for evolutionary change, can in principle not only be caused by variation in DNA sequence, but also by underlying epigenetic variation. However, the potential scope of such phenotypic effects and their evolutionary significance are largely unexplored. Here, we conducted a glasshouse experiment in which we tested the response of a large number of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana – lines that are nearly isogenic but highly variable at the level of DNA methylation – to drought and increased nutrient conditions. We found significant heritable variation among epiRILs both in the means of several ecologically important plant traits and in their plasticities to drought and nutrients. Significant selection gradients, that is, fitness correlations, of several mean traits and plasticities suggest that selection could act on this epigenetically based phenotypic variation. Our study provides evidence that variation in DNA methylation can cause substantial heritable variation of ecologically important plant traits, including root allocation, drought tolerance and nutrient plasticity, and that rapid evolution based on epigenetic variation alone should thus be possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formative cell divisions are critical for multicellular patterning. In the early plant embryo, such divisions follow from orienting the division plane. A major unanswered question is how division plane orientation is genetically controlled, and in particular whether this relates to cell geometry. We have generated a complete 4D map of early Arabidopsis embryogenesis and used computational analysis to demonstrate that several divisions follow a rule that uses the smallest wall area going through the center of the cell. In other cases, however, cell division clearly deviates from this rule, which invariably leads to asymmetric cell division. By analyzing mutant embryos and through targeted genetic perturbation, we show that response to the hormone auxin triggers a deviation from the ``shortest wall'' rule. Our work demonstrates that a simple default rule couples division orientation to cell geometry in the embryo and that genetic regulation can create patterns by overriding the default rule.