129 resultados para ALVEOLAR MACROPHAGE PHAGOCYTOSIS
Resumo:
PURPOSE: The purpose of this prospective study on humans were to evaluate (a) the clinical outcome of alveolar distraction osteogenesis for the correction of vertically deficient edentulous mandibular ridges, (b) the clinical outcome of dental implants placed in the distracted areas, and (c) the quality and quantity of the bone that had formed in the distraction gap. MATERIAL AND METHODS: Seven patients presenting vertically deficient edentulous ridges were treated by means of distraction osteogenesis with an intraoral alveolar distractor. Approximately 3 months after consolidation of the distracted segments, 20 ITI solid screw SLA implants were placed in the distracted areas. Three to 4 months later, abutments were connected and prosthetic loading of the implants started. During implant site preparation, bone biopsies were taken at the implant sites with trephine burrs for histologic and histometric analyses. RESULTS: The mean follow-up after the initial prosthetic loading was 18 months (range 12-24 months). The mean bone gain obtained at the end of distraction was 7 mm (range 5-9 mm). The cumulative success rate of implants 2 years after the onset of prosthetic loading was 95%, whereas the survival rate of implants was 100%. The newly formed bone consisted of woven bone reinforced by parallel-fibered bone with bone marrow spaces between the bone trabeculae. The bone area fraction in the distraction region ranged from 21.6% to 57.8% (38.5+/-11.7%). DISCUSSION AND CONCLUSIONS: Results from this study showed that (a) distraction osteogenesis is a reliable technique for the correction of vertically deficient edentulous ridges, (b) the regenerated bone withstood the functional demands of implant loading, (c) survival and success rates of implants placed in the distracted areas were consistent with those of implants placed in native bone, and (d) there is sufficient bone volume and maturity in the distracted region for primary stability of the implant.
Resumo:
Echinococcus granulosus and Echinococcus multilocularis are cestode parasites, of which the metacestode (larval) stages cause the diseases cystic echinococcosis (CE) and alveolar echinococcosis (AE), respectively. Albendazole and mebendazole are presently used for chemotherapeutical treatment. However, these benzimidazoles do not appear to be parasiticidal in vivo against AE. In addition, failures in drug treatments as well as the occurrence of side-effects have been reported. New drugs are needed to cure AE and CE, which are considered to be neglected diseases. Strategies currently being implemented to identify novel chemotherapeutical treatment options include (i) conventional primary in vitro testing of broad-spectrum anti-infective drugs, either in parallel with, or followed by, animal experimentation; (ii) studies of drugs which interfere with the proliferation of cancer cells and of Echinococcus metacestodes; (iii) exploitation of the similarities between the parasite and mammalian signalling machineries, with a special focus on targeting specific signalling receptors; (iv) in silico approaches, employing the current Echinococcus genomic database information to search for suitable targets for compounds with known modes of action. In the present article, we review the efforts toward obtaining better anti-parasitic compounds which have been undertaken to improve chemotherapeutical treatment of echinococcosis, and summarize the achievements in the field of host-parasite interactions which may also lead to new immuno-therapeutical options.
Resumo:
We analyzed databases spanning 50 years, which included retrospective alveolar echinococcosis (AE) case finding studies and databases of the 3 major centers for treatment of AE in Switzerland. A total of 494 cases were recorded. Annual incidence of AE per 100,000 population increased from 0.12-0.15 during 1956-1992 and a mean of 0.10 during 1993-2000 to a mean of 0.26 during 2001-2005. Because the clinical stage of the disease did not change between observation periods, this increase cannot be explained by improved diagnosis. Swiss hunting statistics suggested that the fox population increased 4-fold from 1980 through 1995 and has persisted at these higher levels. Because the period between infection and development of clinical disease is long, the increase in the fox population and high Echinococcus multilocularis prevalence rates in foxes in rural and urban areas may have resulted in an emerging epidemic of AE 10-15 years later.
Resumo:
The role of macrophages in the clearance of particles with diameters less than 100 nm (ultrafine or nanoparticles) is not well established, although these particles deposit highly efficiently in peripheral lungs, where particle phagocytosis by macrophages is the primary clearance mechanism. To investigate the uptake of nanoparticles by lung phagocytes, we analyzed the distribution of titanium dioxide particles of 20 nm count median diameter in macrophages obtained by bronchoalveolar lavage at 1 hour and 24 hours after a 1-hour aerosol inhalation. Differential cell counts revealing greater than 96% macrophages and less than 1% neutrophils and lymphocytes excluded inflammatory cell responses. Employing energy-filtering transmission electron microscopy (EFTEM) for elemental microanalysis, we examined 1,594 macrophage profiles in the 1-hour group (n = 6) and 1,609 in the 24-hour group (n = 6). We found 4 particles in 3 macrophage profiles at 1 hour and 47 particles in 27 macrophage profiles at 24 hours. Model-based data analysis revealed an uptake of 0.06 to 0.12% ultrafine titanium-dioxide particles by lung-surface macrophages within 24 hours. Mean (SD) particle diameters were 31 (8) nm at 1 hour and 34 (10) nm at 24 hours. Particles were localized adjacent (within 13-83 nm) to the membrane in vesicles with mean (SD) diameters of 592 (375) nm at 1 hour and 414 (309) nm at 24 hours, containing other material like surfactant. Additional screening of macrophage profiles by conventional TEM revealed no evidence for agglomerated nanoparticles. These results give evidence for a sporadic and rather unspecific uptake of TiO(2)-nanoparticles by lung-surface macrophages within 24 hours after their deposition, and hence for an insufficient role of the key clearance mechanism in peripheral lungs.
Resumo:
BACKGROUND: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. METHODS: Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. RESULTS: Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. CONCLUSION: After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.
Resumo:
This literature review was performed to analyse the outcomes of clinical studies of alveolar distraction osteogenesis (DO) listed by PUBMED between January 1996 and December 2006. A PUBMED search identified 128 articles on alveolar DO. Twenty articles covering 209 cases were analysed, considering location, device and procedural parameters, rate of augmentation, aspect of final implant placement and follow up. The mean latency period was 7.26+/-2.31 days, distraction rate 0.71+/-0.27 mm/day, rate of augmentation 6.88+/-2.52 mm and consolidation period 12.22+/-5.58 weeks. A total of 469 implants were placed and followed post loading for an average of 14.19+/-11.03 months, with a survival rate of 97%. Of the different procedural parameters, only the difference between mean consolidation period for failed (8.10+/-2.51 weeks) and successful (12.43+/-5.62 weeks) implants was statistically significant (P=0.01). Use of DO may be advantageous in terms of the success rate of implants placed in augmented sites, but there is still a lack of sufficient data based on long-term follow up. Future experimental studies should evaluate the application of different methods with a view to shortening the overall treatment period and improving the performance of implants placed in distracted alveolar ridges.
Resumo:
AIM: The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. MATERIALS AND METHODS: Twelve anaesthetized pigs (26+/-1kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a p<0.05 was considered statistically significant. RESULTS: IPPV was associated with cyclic alveolar recruitment and de-recruitment. Compared with controls, the CCO-CPR group had a significantly larger mean fractional area of atelectasis (p=0.009), and significantly lower PaO(2) (p=0.002) and mean arterial pressure (p=0.023). The increase in mean atelectatic lung area observed during basic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. CONCLUSION: A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.
Resumo:
This case report describes the diagnosis and treatment of a Ewing's sarcoma in the right maxillary sinus and alveolar bone of a 19-year-old female patient. The first clinical symptoms were a loss of sensitivity of the premolars and first molar in the right maxilla and acute pain located in the area of these teeth. Initially, the referring dentist had treated these findings as an acute apical periodontitis with root canal medication. Because swellings on the palatal and buccal aspects of the teeth occurred and could not be treated with incision and drainage, the dentist referred the patient. Cone-beam computed tomography revealed a proliferation of soft tissue in the right maxillary sinus, with a radiopaque material at the tip of the mesiobuccal root of the first molar and resorptive signs of the mesiobuccal and distobuccal roots of the first molar. The palatal cortical bone of the right alveolar process seemed to be intact. After explorative surgery with biopsies from the buccal, palatal, and sinus proliferation areas, the pathologist diagnosed the lesion as a Ewing's sarcoma. Treatment of the patient consisted of initial chemotherapy, hemimaxillectomy, and postsurgical chemoradiotherapy.
Resumo:
Alveoli are formed in the lung by the insertion of secondary tissue folds, termed septa, which are subsequently remodeled to form the mature alveolar wall. Secondary septation requires interplay between three cell types: endothelial cells forming capillaries, contractile interstitial myofibroblasts, and epithelial cells. Here, we report that postnatal lung alveolization critically requires ephrinB2, a ligand for Eph receptor tyrosine kinases expressed by the microvasculature. Mice homozygous for the hypomorphic knockin allele ephrinB2DeltaV/DeltaV, encoding mutant ephrinB2 with a disrupted C-terminal PDZ interaction motif, show severe postnatal lung defects including an almost complete absence of lung alveoli and abnormal and disorganized elastic matrix. Lung alveolar formation is not sensitive to loss of ephrinB2 cytoplasmic tyrosine phosphorylation sites. Postnatal day 1 mutant lungs show extracellular matrix alterations without differences in proportions of major distal cell populations. We conclude that lung alveolar formation relies on endothelial ephrinB2 function.
Resumo:
This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.
Resumo:
BACKGROUND: Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. METHODS: Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4 degrees C and 50 min of reperfusion at 37 degrees C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. RESULTS: Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases (CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 microm3(0.10)) and CE+S (481 microm3(0.10)) compared with controls (323 microm3(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05). CONCLUSION: Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.
Resumo:
Despite its growing popularity, alveolar distraction osteogenesis (DO) is a technically challenging operation. The purpose of this review is to estimate the types and frequencies of complications in alveolar DO and to identify factors associated with them. 26 reports of alveolar DO found in the PubMed database that met the criteria for inclusion were studied. 256 patients underwent 270 DO procedures; 109 complications arose in 77 patients (30%) with 77 distractions (29%). In 27/77 patients, more than 1 complication occurred. 20 complications (7%) were a consequence of surgery, 32 (12%) occurred during distraction, 22 (8%) during the consolidation period and 35 (13%) post-distraction. The most common complications were insufficient bone formation following the consolidation period (22 cases, 8%), regression of distraction distance (18 cases, 7%) and problems related to the distractor device (16 cases, 6%). The most severe complications occurred in 4 cases (2%). The type of device used and an augmentation rate of more than 0.5 mm/24 h were significantly related to insufficient bone formation and evidence of complications. This review indicates that complications in alveolar DO are frequent, but rarely cause severe problems or clinical decline. Appropriate treatment selection, surgical technique and adjusted protocol should decrease the number of complications.
Resumo:
AIM: [(18)F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. PATIENTS, METHODS: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. RESULTS: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. CONCLUSION: Treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion.