67 resultados para 4n-removal cross section
Resumo:
This paper reports a measurement of the W+b-jets (W+b+X and W+b (b) over bar +X) production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb(-1), collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with the next-to-leading order QCD prediction, corrected for non-perturbative and double-parton interactions (DPI) contributions, of 4.70 +/- 0.09 (stat) (+0.60)(-0.49) (scale) +/- 0.06 (PDF) +/- 0.16 (non-pert) (+0.52)(-0.38) (DPI) pb.
Resumo:
A measurement of the total pp cross section at the LHC at √s = 7 TeV is presented. In a special run with high-β* beam optics, an integrated luminosity of 80 μb−1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t . The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t | range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to |t | →0, the total cross section, σtot(pp→X), is measured via the optical theorem to be: σtot(pp→X) = 95.35± 0.38 (stat.)± 1.25 (exp.)± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t | → 0. In addition, the slope of the elastic cross section at small |t | is determined to be B = 19.73 ±0.14 (stat.) ±0.26 (syst.) GeV−2.
Resumo:
The prompt and non-prompt production cross-sections for ψ(2S) mesons are measured using 2.1 fb−1 of pp collision data at a centre-of-mass energy of 7TeV recorded by the ATLAS experiment at the LHC. The measurement exploits the ψ(2S) → J/ψ (→μ+μ−)π+π− decay mode, and probes ψ(2S) mesons with transverse momenta in the range10 ≤ pT < 100 GeV and rapidity |y| < 2.0. The results are compared to other measurements of ψ(2S) production at the LHC and to various theoretical models for prompt and non-prompt quarkonium production.
Resumo:
This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to allhadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of s = 7 TeV and correspond to an integrated luminosity of 4.6 fb−1. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum pT > 320 GeV and pseudorapidity |η| < 1.9, is measured to be σ + = ± W Z 8.5 1.7 pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques.
Resumo:
The differential cross section for the process Z/√ → ℓℓ (ℓ = e, μ) as a function of dilepton invariant mass is measured in pp collisions at ps = 7TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb−1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb−1 of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leadingorder QCD calculations, unless the latter are matched to a parton shower calculation.
Resumo:
Ameasurement is presented of the φ×BR(φ → K+K−) production cross section at √s = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 μb−1, collected with theATLAS experiment at the LHC. Selection of φ(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section ismeasured as a function of the transverse momentum, pT,φ , and rapidity, yφ, of the φ(1020) meson in the fiducial region 500< pT,φ <1200MeV, |yφ| < 0.8, kaon pT,K > 230 MeV and kaon momentum pK < 800 MeV. The integrated φ(1020)-meson production cross section in this fiducial range is measured to be σφ×BR(φ → K+K−) = 570 ± 8 (stat) ± 66 (syst) ± 20 (lumi) μb.
Resumo:
The process pp ! W±J/ provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb−1 of p s =7TeV pp collisions at the LHC, the first observation is made of the production of W± +prompt J/ events in hadronic collisions, using W± → μѵμ and Jψ → μ+μ−. A yield of 27.4+7.5−6.5 W± + prompt J/ψ events is observed, with a statistical significance of 5.1ơ. The production rate as a ratio to the inclusive W± boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.
Resumo:
A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy s √ =7 TeV is presented. The results are based on an integrated luminosity of 4.6 fb −1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity η γ and transverse energy E γ T in the kinematic range 100≤E γ T <1000 GeV and in the regions |η γ |<1.37 and 1.52≤|η γ |<2.37 . The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of E γ T and η γ .
Resumo:
The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ⟩ϕ=1.11±0.10(stat)±0.18(syst)×10−38 cm2/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10−38 cm2/nucleon and the GENIE prediction is 1.08×10−38 cm2/nucleon. The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.
Resumo:
We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section. It is obtained by observing nuclear deexcitation γ rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to 3.01 × 1020 protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the 4–30 MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background is primarily nonquasielastic neutral-current interactions and has only 1.2 events from natural radioactivity. The flux-averaged NCQE cross section we measure is 1.55 × 10−38 cm2 with a 68% confidence interval of ð1.22; 2.20Þ × 10−38 cm2 at a median neutrino energy of 630 MeV, compared with the theoretical prediction of 2.01 × 10−38 cm2.
Resumo:
Postmortem investigation is increasingly supported by Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This led to the idea to implement a noninvasive or minimally invasive autopsy technique. Therefore, a minimally invasive angiography technique becomes necessary, in order to support the vascular cross section diagnostic. Preliminary experiments investigating different contrast agents for CT and MRI and their postmortem applicability have been performed using an ex-vivo porcine coronary model. MSCT and MRI angiography was performed in the porcine model. Three human corpses were investigated using minimally invasive MSCT angiography. Via the right femoral artery a plastic tube was advanced into the aortic arch. Using a flow adjustable pump the radiopaque contrast agent meglumine-ioxithalamate was injected. Subsequent MSCT scanning provided an excellent anatomic visualization of the human arterial system including intracranial and coronary arteries. Vascular pathologies such as calcification, stenosis and injury were detected. Limitations of the introduced approach are cases of major vessel injury and cases that show an advanced stage of decay.
Resumo:
We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width.
Resumo:
We report a measurement of the νµ charged current quasi-elastic cross-sections on carbon in the T2K on-axis neutrino beam. The measured charged current quasi-elastic cross-sections on carbon at mean neutrino energies of 1.94 GeV and 0.93 GeV are (11.95 ± 0.19(stat.) +1.82−1.47(syst.)) ×10^−39 cm^2/neutron, and (10.64 ± 0.37(stat.)+2.03−1.65(syst.)) × 10^−39 cm^2/neutron, respectively. These results agree well with the predictions of neutrino interaction models. In addition, we investigated the effects of the nuclear model and the multi-nucleon interaction.