63 resultados para 3D ULTRASONOGRAPHY
Resumo:
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.
Resumo:
Contrast-enhanced ultrasonography (CEUS) is a novel imaging technique that is safe and applicable on the bedside. Recent developments seem to enable CEUS to quantify organ perfusion. We performed an exploratory study to determine the ability of CEUS to detect changes in renal perfusion and to correlate them with effective renal plasma flow.
Resumo:
Producing a rich, personalized Web-based consultation tool for plastic surgeons and patients is challenging.
Resumo:
Excitation of tert-butylnitrite into the first and second UV absorption bands leads to efficient dissociation into the fragment radicals NO and tert-butoxy in their electronic ground states (2)Π and (2)E, respectively. Velocity distributions and angular anisotropies for the NO fragment in several hundred rotational and vibrational quantum states were obtained by velocity-map imaging and the recently developed 3D-REMPI method. Excitation into the well resolved vibronic progression bands (k = 0, 1, 2) of the NO stretch mode in the S(1) ← S(0) transition produces NO fragments mostly in the vibrational state with v = k, with smaller fractions in v = k - 1 and v = k - 2. It is concluded that dissociation occurs on the purely repulsive PES of S(1) without barrier. All velocity distributions from photolysis via the S(1)(nπ*) state are monomodal and show high negative anisotropy (β ≈ -1). The rotational distributions peak near j = 30.5 irrespective of the vibronic state S(1)(k) excited and the vibrational state v of the NO fragment. On average 46% of the excess energy is converted to kinetic energy, 23% and 31% remain as internal energy in the NO fragment and the t-BuO radical, respectively. Photolysis via excitation into the S(2) ← S(0) transition at 227 nm yields NO fragments with about equal populations in v = 0 and v = 1. The rotational distributions have a single maximum near j = 59.5. The velocity distributions are monomodal with positive anisotropy β ≈ 0.8. The average fractions of the excess energy distributed into translation, internal energy of NO, and internal energy of t-BuO are 39%, 23%, and 38%, respectively. In all cases ∼8500 cm(-1) of energy remain in the internal degrees of freedom of the t-BuO fragment. This is mostly assigned to rotational energy. An ab initio calculation of the dynamic reaction path shows that not only the NO fragment but also the t-BuO fragment gain large angular momentum during dissociation on the purely repulsive potential energy surface of S(2).
Resumo:
OBJECTIVE: A severely virilized 46, XX newborn girl was referred to our center for evaluation and treatment of congenital adrenal hyperplasia (CAH) because of highly elevated 17alpha-hydroxyprogesterone levels at newborn screening; biochemical tests confirmed the diagnosis of salt-wasting CAH. Genetic analysis revealed that the girl was compound heterozygote for a previously reported Q318X mutation in exon 8 and a novel insertion of an adenine between nucleotides 962 and 963 in exon 4 of the CYP21A2 gene. This 962_963insA mutation created a frameshift leading to a stop codon at amino acid 161 of the P450c21 protein. AIM AND METHODS: To better understand structure-function relationships of mutant P450c21 proteins, we performed multiple sequence alignments of P450c21 with three mammalian P450s (P450 2C8, 2C9 and 2B4) with known structures as well as with human P450c17. Comparative molecular modeling of human P450c21 was then performed by MODELLER using the X-ray crystal structure of rabbit P450 2B4 as a template. RESULTS: The new three dimensional model of human P450c21 and the sequence alignment were found to be helpful in predicting the role of various amino acids in P450c21, especially those involved in heme binding and interaction with P450 oxidoreductase, the obligate electron donor. CONCLUSION: Our model will help in analyzing the genotype-phenotype relationship of P450c21 mutations which have not been tested for their functional activity in an in vitro assay.
Resumo:
REASONS FOR PERFORMING STUDY: The diagnosis of lameness caused by proximal metacarpal and metatarsal pain can be challenging. Magnetic resonance imaging (MRI) offers the possibility for further diagnosis but there have been no studies on the normal MRI appearance of the origin of the suspensory ligament (OSL) in conjunction with ultrasonography and histology. OBJECTIVES: To describe the MRI appearance of the OSL in fore- and hindlimbs of sound horses and compare it to the ultrasonographic and histological appearance. The findings can be used as reference values to recognise pathology in the OSL. METHODS: The OSL in the fore- and hindlimbs of 6 sound horses was examined by ultrasonography prior to death, and MRI and histology post mortem. Qualitative evaluation and morphometry of the OSL were performed and results of all modalities compared. RESULTS: Muscular tissue, artefacts, variable SL size and shape complicated ultrasonographic interpretation. In MRI and histology the forelimb OSL consisted of 2 portions, the lateral being significantly thicker than medial. The hindlimb SL had a single large area of origin. In fore- and hindlimbs, the amount of muscular tissue was significantly larger laterally than medially. Overall SL measurements using MRI were significantly higher than using histology and ultrasonography and histological higher than ultrasonographic measurements. Morphologically, there was a good correlation between MRI and histology. CONCLUSIONS: MRI provides more detailed information than ultrasonography regarding muscle fibre detection and OSL dimension and correlates morphologically well with histology. Therefore, ultrasonographic results should be regarded with caution. POTENTIAL RELEVANCE: MRI may be a diagnostic aid when other modalities fail to identify clearly the cause of proximal metacarpal and metatarsal pain; and may improve selection of adequate therapy and prognosis for injuries in this region.
Resumo:
The lynx, which was reintroduced to Switzerland after being exterminated at the beginning of the 20th century, is protected by Swiss law. However, poaching occurs from time to time, which makes criminal investigations necessary. In the presented case, an illegally shot lynx was examined by conventional plane radiography and three-dimensional multislice computertomography (3D MSCT), of which the latter yielded superior results with respect to documentation and reconstruction of the inflicted gunshot wounds. We believe that 3D MSCT, already described in human forensic-pathological cases, is also a suitable and promising new technique for veterinary pathology.