134 resultados para "Insulin-Like Growth Factor II"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor 2 antisense (Igf2as) gene is part of the Ins-Igf2-H19 imprinted gene cluster. The function of the paternally expressed Igf2as is still elusive. In our previous work, we showed that Igf2as transcripts were located in the cytoplasm of C2C12 mouse myoblast cells, associated with polysomes and polyadenylated suggesting that Igf2as is protein coding. In the present work, the protein coding capacity of Igf2as was investigated. We demonstrate for the first time the existence of a polypeptide translated from an Igf2as construct. Furthermore, an RNA-Seq analysis was performed using RNA prepared from skeletal muscles of newborn wild-type and ∆ DMR1-U2 mice to further elucidate the function of Igf2as transcripts. We found no evidence for a regulatory role of Igf2as in the imprinted gene cluster. Interestingly, the RNA-Seq analysis indicated that Igf2as plays a role in the energy metabolism, the cell cycle, histone acetylation and muscle contraction pathways. Our Igf2as investigations further elucidated that there are two distinct Igf2as transcripts corresponding to two putative ORFs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the rapid increase in approaches to pro- or anti-angiogenic therapy, new and effective methodologies for administration of cell-bound growth factors will be required. We sought to develop the natural hydrogel matrix fibrin as platform for extensive interactions and continuous signaling by the vascular morphogen ephrin-B2 that normally resides in the plasma membrane and requires multivalent presentation for ligation and activation of Eph receptors on apposing endothelial cell surfaces. Using fibrin and protein engineering technology to induce multivalent ligand presentation, a recombinant mutant ephrin-B2 receptor binding domain was covalently coupled to fibrin networks at variably high densities. The ability of fibrin-bound ephrin-B2 to act as ligand for endothelial cells was preserved, as demonstrated by a concomitant, dose-dependent increase of endothelial cell binding to engineered ephrin-B2-fibrin substrates in vitro. The therapeutic relevance of ephrin-B2-fibrin implant matrices was demonstrated by a local angiogenic response in the chick embryo chorioallontoic membrane evoked by the local and prolonged presentation of matrix-bound ephrin-B2 to tissue adjacing the implant. This new knowledge on biomimetic fibrin vehicles for precise local delivery of membrane-bound growth factor signals may help to elucidate specific biological growth factor function, and serve as starting point for development of new treatment strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To evaluate the safety, tolerability and bioactivity of ascending doses of MP0112, a designed ankyrin repeat protein (DARPin) that binds with high affinity to vascular endothelial growth factor-A (VEGF-A), in treatment-naive patients with exudative age-related macular degeneration (AMD). DESIGN Phase I/II, open-label, multicenter, dose-escalation study. METHODS Patients were to receive a single intravitreal injection of MP0112 at doses ranging from 0.04 to 3.6 mg and be monitored for 16 weeks for safety, efficacy, pharmacokinetics, and dose response. RESULTS Altogether, 32 patients received a single injection of MP0112. The maximum tolerated dose was 1.0 mg because of a case of endophthalmitis in the 2.0 mg cohort. Drug-related adverse events were reported by 13 (41%) of 32 patients; they included ocular inflammation in 11 patients (7 mild, 4 moderate in severity). Visual acuity scores were stable or improved compared with baseline for ≥4 weeks following injection; both retinal thickness and fluorescein angiography leakage decreased in a dose-dependent manner. Rescue therapy was administered to 20 (91%) of 22 patients who received 0.04-0.4 mg MP0112 compared with 4 of 10 (40%) patients who received 1.0 or 2.0 mg. Of patients in the higher-dose cohorts who did not require rescue treatment, 83% (5/6) maintained reductions in central retinal thickness through week 16. CONCLUSIONS A single injection of 1.0 or 2.0 mg MP0112 resulted in mean decreases in retinal thickness and leakage area despite ocular inflammation. Larger-scale studies are warranted to confirm these observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment allocation by epidermal growth factor receptor mutation status is a new standard in patients with metastatic nonesmall-cell lung cancer. Yet, relatively few modern chemotherapy trials were conducted in patients characterized by epidermal growth factor receptor wild type. We describe the results of a multicenter phase II trial, testing in parallel 2 novel combination therapies, predefined molecular markers, and tumor rebiopsy at progression. Objective: The goal was to demonstrate that tailored therapy, according to tumor histology and epidermal growth factor receptor (EGFR) mutation status, and the introduction of novel drug combinations in the treatment of advanced nonesmall-cell lung cancer are promising for further investigation. Methods: We conducted a multicenter phase II trial with mandatory EGFR testing and 2 strata. Patients with EGFR wild type received 4 cycles of bevacizumab, pemetrexed, and cisplatin, followed by maintenance with bevacizumab and pemetrexed until progression. Patients with EGFR mutations received bevacizumab and erlotinib until progression. Patients had computed tomography scans every 6 weeks and repeat biopsy at progression. The primary end point was progression-free survival (PFS) ≥ 35% at 6 months in stratum EGFR wild type; 77 patients were required to reach a power of 90% with an alpha of 5%. Secondary end points were median PFS, overall survival, best overall response rate (ORR), and tolerability. Further biomarkers and biopsy at progression were also evaluated. Results: A total of 77 evaluable patients with EGFR wild type received an average of 9 cycles (range, 1-25). PFS at 6 months was 45.5%, median PFS was 6.9 months, overall survival was 12.1 months, and ORR was 62%. Kirsten rat sarcoma oncogene mutations and circulating vascular endothelial growth factor negatively correlated with survival, but thymidylate synthase expression did not. A total of 20 patients with EGFR mutations received an average of 16.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of prolonged electroporation-mediated human interleukin-10 (hIL-10) overexpression 24 hours before transplantation, combined with sequential human hepatocyte growth factor (HGF) overexpression into skeletal muscle on day 5, on rat lung allograft rejection was evaluated. Left lung allotransplantation was performed from Brown-Norway to Fischer-F344 rats. Gene transfer into skeletal muscle was enhanced by electroporation. Three groups were studied: group I animals (n = 5) received 2.5 μg pCIK-hIL-10 (hIL-10/CMV [cytomegalovirus] early promoter enhancer) on day -1 and 80 μg pCIK-HGF (HGF/CMV early promoter enhancer) on day 5. Group II animals (n = 4) received 2.5 μg pCIK-hIL-10 and pUbC-hIL-10 (hIL-10/pUbC promoter) on day -1. Control group III animals (n = 4) were treated by sham electroporation on days -1 and 5. All animals received daily nontherapeutic intraperitoneal dose of cyclosporin A (2.5 mg/kg) and were sacrificed on day 15. Graft oxygenation and allograft rejection were evaluated. Significant differences were found between study groups in graft oxygenation (Pao(2)) (P = .0028; group I vs. groups II and III, P < .01 each). Pao(2) was low in group II (31 ± 1 mm Hg) and in group III controls (34 ± 10 mm Hg), without statistically significant difference between these 2 groups (P = .54). In contrast, in group I, Pao(2) of recipients sequentially transduced with IL-10 and HGF plasmids was much improved, with 112 ± 39 mm Hg (vs. groups II and III; P < .01 each), paralleled by reduced vascular and bronchial rejection (group I vs. groups II and III, P < .021 each). Sequential overexpression of anti-inflammatory cytokine IL-10, followed by sequential and overlapping HGF overexpression on day 5, preserves lung function and reduces acute lung allograft rejection up to day 15 post transplant as compared to prolonged IL-10 overexpression alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) can induce normal angiogenesis or the growth of angioma-like vascular tumors depending on the amount secreted by each producing cell because it remains localized in the microenvironment. In order to control the distribution of VEGF expression levels in vivo, we recently developed a high-throughput fluorescence-activated cell sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a specific VEGF dose from a heterogeneous primary population. Here we tested the hypothesis that cell-based delivery of a controlled VEGF level could induce normal angiogenesis in the heart, while preventing the development of angiomas. Freshly isolated human adipose tissue-derived stem cells (ASC) were transduced with retroviral vectors expressing either rat VEGF linked to a FACS-quantifiable cell-surface marker (a truncated form of CD8) or CD8 alone as control (CTR). VEGF-expressing cells were FACS-purified to generate populations producing either a specific VEGF level (SPEC) or uncontrolled heterogeneous levels (ALL). Fifteen nude rats underwent intramyocardial injection of 10(7) cells. Histology was performed after 4 weeks. Both the SPEC and ALL cells produced a similar total amount of VEGF, and both cell types induced a 50%-60% increase in both total and perfused vessel density compared to CTR cells, despite very limited stable engraftment. However, homogeneous VEGF expression by SPEC cells induced only normal and stable angiogenesis. Conversely, heterogeneous expression of a similar total amount by the ALL cells caused the growth of numerous angioma-like structures. These results suggest that controlled VEGF delivery by FACS-purified ASC may be a promising strategy to achieve safe therapeutic angiogenesis in the heart.