473 resultados para Friendly fire (Military science)
Resumo:
OBJECTIVES To establish an effective alfaxalone concentration to be used for bath immersion of fire-bellied toads (Bombina orientalis) and to describe its effects. STUDY DESIGN Prospective experimental study. ANIMALS Thirteen oriental fire-bellied toads. METHODS The study was carried out in two phases. The pilot phase involved five animals and aimed to identify an alfaxalone concentration capable of producing induction of anesthesia, defined as immobility with a head down position and loss of responsiveness to stimulation with a stick. The following trial in an additional eight toads used the effective alfaxalone concentration established during the pilot phase. Data from 11 animals (three toads in the pilot study and the eight additional toads) were analyzed. Twenty minutes after immersion in the anesthetic solution, the toads were removed from the bath, and heart rate, respiratory rate, the righting, myotactic and the nociceptive withdrawal reflexes were evaluated every 5 minutes. The loss of both righting and nociceptive withdrawal reflexes was considered indicative of a surgical depth of anesthesia. The time elapsed from anesthetic induction to return of righting reflex, the quality of recovery and the occurrence of undesired effects were observed and recorded. RESULTS Immersion was found to be a suitable anesthetic technique for oriental fire-bellied toads and 200 mg L(-1) alfaxalone concentration produced anesthetic induction in 10 out of 11 toads. Side effects, such as skin irritation, erythema and changes in cutaneous pigmentation, were not observed in any animal. The duration of anesthesia ranged from 10 to 30 minutes after removal of the toads from the alfaxalone bath, and surgical depth of anesthesia was never achieved. CONCLUSIONS AND CLINICAL RELEVANCE It was concluded that alfaxalone anesthesia induced by immersion in a concentration of 200 mg L(-1) is only suitable for toads undergoing non-invasive short procedures.
Resumo:
With the increasing pressure to improve the contribution of forests to help dealing with global changes, it is critical to understand the different perceptions of those involved in the forest. How do forest owners, managers and members of local communities who often depend on the forest, value it and what are the problems affecting the forests in terms of being able to meet these new challenges? In Portugal, this task has taken on an even greater priority as more than 90% of the forest is private and forest management relies on the individual decisions of thousands of forest owners. To understand stakeholder views on forest and forest management, a transversal social perception survey was implemented in the form of a case study of central Portugal which included decision-makers, local technicians, forest owners and the general public. The results show that there is a consensus on the main issues affecting forests and forest management. A shift from classic forest owners to the emergence of indifferent forest owners was observed, although this shift has not been recognized by the forest owners in the survey, who maintain the individual management of their properties.
Resumo:
Vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role offire during the Holocene by combining macroscopic charcoal and the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these two different fire proxies allows a more robust understanding of the complex history of fire re- gimes at different spatial scales during the Holocene. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Peten Itza, Guatemala, and compared our results with millennial-scale vegetation and climate change available in the area. We detected three periods of high fire activity during the Holocene: 9500 e 6000 cal yr BP, 3700 cal yr BP and 2700 cal yr BP. We attribute the first maximum mostly to climate conditions and the last maximum to human activities. The rapid change between burned vegetation types at the 3700 cal yr BP fire maximum may result from human activity.
Resumo:
Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.
Resumo:
Sphagnum peatlands in the oceanic-continental transition zone of Poland are currently influenced by climatic and anthropogenic factors that lead to peat desiccation and susceptibility to fire. Little is known about the response of Sphagnum peatland testate amoebae (TA) to the combined effects of drought and fire. To understand the relationships between hydrology and fire dynamics, we used high-resolution multi-proxy palaeoecological data to reconstruct 2000 years of mire history in northern Poland. We employed a new approach for Polish peatlands – joint TA-based water table depth and charcoal-inferred fire activity reconstructions. In addition, the response of most abundant TA hydrological indicators to charcoal-inferred fire activity was assessed. The results show four hydrological stages of peatland development: moderately wet (from ∼35 BC to 800 AD), wet (from ∼800 to 1390 AD), dry (from ∼1390 to 1700 AD) and with an instable water table (from ∼1700 to 2012 AD). Fire activity has increased in the last millennium after constant human presence in the mire surroundings. Higher fire activity caused a rise in the water table, but later an abrupt drought appeared at the onset of the Little Ice Age. This dry phase is characterized by high ash contents and high charcoal-inferred fire activity. Fires preceded hydrological change and the response of TA to fire was indirect. Peatland drying and hydrological instability was connected with TA community changes from wet (dominance of Archerella flavum, Hyalosphenia papilio, Amphitrema wrightianum) to dry (dominance of Cryptodifflugia oviformis, Euglypha rotunda); however, no clear fire indicator species was found. Anthropogenic activities can increase peat fires and cause substantial hydrology changes. Our data suggest that increased human fire activity was one of the main factors that influenced peatland hydrology, though the mire response through hydrological changes towards drier conditions was delayed in relation to the surrounding vegetation changes.
Resumo:
OBJECTIVE To determine a dexmedetomidine concentration, to be added to an alfaxalone-based bath solution, that will enhance the anaesthetic and analgesic effects of alfaxalone; and to compare the quality of anaesthesia and analgesia provided by immersion with either alfaxalone alone or alfaxalone with dexmedetomidine in oriental fire-bellied toads (Bombina orientalis). STUDY DESIGN Pilot study followed by a prospective, randomized, experimental trial. ANIMALS Fourteen oriental fire-bellied toads. METHODS The pilot study aimed to identify a useful dexmedetomidine concentration to be added to an anaesthetic bath containing 20 mg 100 mL(-1) alfaxalone. Thereafter, the toads were assigned to one of two groups, each comprising eight animals, to be administered either alfaxalone (group A) or alfaxalone-dexmedetomidine (group AD). After immersion for 20 minutes, the toads were removed from the anaesthetic bath and the righting, myotactic and nociceptive reflexes, cardiopulmonary variables and von Frey filaments threshold were measured at 5 minute intervals and compared statistically between groups. Side effects and complications were noted and recorded. RESULTS In the pilot study, a dexmedetomidine concentration of 0.3 mg 100 mL(-1) added to the alfaxalone-based solution resulted in surgical anaesthesia. The toads in group AD showed higher von Frey thresholds and lower nociceptive withdrawal reflex scores than those in group A. However, in group AD, surgical anaesthesia was observed in two out of eight toads only, and induction of anaesthesia was achieved in only 50% of the animals, as compared with 100% of the toads in group A. CONCLUSIONS AND CLINICAL RELEVANCE The addition of dexmedetomidine to an alfaxalone-based solution for immersion anaesthesia provided some analgesia in oriental fire-bellied toads, but failed to potentiate the level of unconsciousness and appeared to lighten the depth of anaesthesia. This limitation renders the combination unsuitable for anaesthetizing oriental fire-bellied toads for invasive procedures.
Resumo:
Variability in fire regime at the continental scale has primarily been attributed to climate change, often overshadowing the widely potential impact of human activities. However, human ignition modifies the rhythm of fire episodes occurrence (fire frequency), whereas land use alters vegetation composition and fuel load, and thus the amount of biomass burned. It is unclear, however, whether and how humans have exercised a significant influence over fire regimes at continental and millennial scales. Based on sedimentary charcoal records, we use new alternative estimate of fire frequency and biomass burned for the last 16000 years (here after 16 ky) that we evaluate with outputs from climate, vegetation, land use and population models. We find that pronounced regional-scale land use changes in southern Europe at the beginning of the Neolithic (8–6 ky), during the Bronze Age (5–4 ky) and the medieval period (1 ky) caused a doubling of fire frequency compared to the Holocene average (the last 11.5 ky). Despite anthropogenic influences, southern European biomass burned decreased from 7 ky, which is in line both with changes in orbital parameters leading climate cooling and also reductions in biomass availability because of land use. Our study underscores the role of elevation-dependent parameters, and particularly biomass and land management, as major drivers of fire regime variability. Results attest a determinant anthropogenic driving-force on fire regime and a decrease in fire-carbon emissions since 7 ky in Southern Europe.
Resumo:
Advances in Interdisciplinary Paleofire Research: Data and Model Comparisons for the Past Millennium; Harvard Forest, Petersham, Massachusetts, 27 September to 2 October 2015