43 resultados para venom glands
Resumo:
The solution structure of cupiennin 1a, a 35 residue, basic antibacterial peptide isolated from the venom of the spider Cupiennius salei, has been determined by nuclear magnetic resonance (NMR) spectroscopy. The peptide was found to adopt a helix−hinge−helix structure in a membrane mimicking solvent. The hinge may play a role in allowing the amphipathic N-terminal helix and polar C-terminal helix to orient independently upon membrane binding, in order to achieve maximal antibacterial efficacy. Solid-state 31P and 2H NMR was used to further study the effects of cupiennin 1a on the dynamic properties of lipid membranes, using zwitterionic chain deuterated dimyristoylphosphatidylcholine (d54-DMPC) and anionic dimyristoylphosphatidylglycerol (DMPG) multilamellar vesicles. In d54-DMPC alone, cupiennin 1a caused a decrease in the 31P chemical shift anisotropy, indicating some interaction with the lipid head groups, and a decrease in order over the entire acyl chain. In contrast, for the mixed (d54-DMPC/DMPG) lipid system cupiennin 1a appeared to induce lateral separation of the two lipids as evidenced by the 31P spectra, in which the peptide preferentially interacted with DMPG. Little effect was observed on the deuterated acyl chain order parameters in the d54-DMPC/DMPG model membranes. Furthermore, 31P NMR relaxation measurements confirmed a differential effect on the lipid motions depending upon the membrane composition. Therefore, subtle differences are likely in the mechanism by which cupiennin 1a causes membrane lysis in either prokaryotic or eukaryotic cells, and may explain the specific spectrum of activity.
Resumo:
Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.
Resumo:
MR imaging at 1.5T is considered the prime cross-sectional imaging modality for characterization of adrenal lesions. This is of utmost clinical importance, because non-functioning adenoma and adrenal metastasis are fairly common. The differentiation of these two tumor entities primarily is based on chemical shift imaging, also known as dual echo in-phase and opposed-phase imaging. At 3.0 T, the echo time pairs for in-phase and opposed-phase MR imaging need to be adjusted because the frequency difference is double that of standard 1.5T MR systems. Unfortunately, the acquisition of the first opposed-phase echo at 1.1 milliseconds and the first in-phase echo at 2.2 milliseconds within the same breath-hold requires unacceptably high receiver bandwidths at 3.0 T. Therefore, alternative data collection schemes have been implemented. This article reviews the current literature regarding adrenal imaging at 3.0 T with a focus on the chemical shift technique.
Resumo:
PURPOSE: To evaluate the function of the parotid glands before and during gustatory stimulation, using an intrinsic susceptibility-weighted MRI method (blood oxygenation level dependent, BOLD-MRI) at 1.5T and 3T. MATERIALS AND METHODS: A total of 10 and 13 volunteers were investigated at 1.5T and 3T, respectively. Measurements were performed before and during gustatory stimulation using ascorbate. Circular regions of interest (ROIs) were delineated in the left and right parotid glands, and in the masseter muscle for comparison. The effects of stimulation were evaluated by calculating the difference between the relaxation rates, DeltaR(2)*. Baseline and stimulation were statistically compared (Student's t-tests), merging both parotid glands. RESULTS: The averaged DeltaR(2)* values prestimulation obtained in all parotid glands were stable (-0.61 to 0.38 x 10(-3) seconds(-1)). At 3T, these values were characterized by an initial drop (to -2.7 x 10(-3) seconds(-1)) followed by a progressive increase toward the baseline. No significant difference was observed between baseline and parotid gland stimulation at 1.5T, neither for the masseter muscle at both field strengths. A considerable interindividual variability (over 76%) was noticed at both magnetic fields. CONCLUSION: BOLD-MRI at 3T was able to detect DeltaR(2)* changes in the parotid glands during gustatory stimulation, consistent with an increase in oxygen consumption during saliva production.
Resumo:
BACKGROUND: H1 antihistamines increase safety during allergen-specific immunotherapy and might influence the outcome because of immunoregulatory effects. OBJECTIVE: We sought to analyze the influence of 5 mg of levocetirizine (LC) on the safety, efficacy, and immunologic effects of ultrarush honeybee venom immunotherapy (BVIT). METHOD: In a double-blind, placebo-controlled study 54 patients with honeybee venom allergy received LC or placebo from 2 days before BVIT to day 21. Side effects during dose increase and systemic allergic reactions (SARs) to a sting challenge after 120 days were analyzed. Allergen-specific immune response was investigated in skin, serum, and allergen-stimulated T-cell cultures. RESULTS: Side effects were significantly more frequent in patients receiving placebo. Four patients receiving placebo dropped out because of side effects. SARs to the sting challenge occurred in 8 patients (6 in the LC group and 2 in the placebo group). Seven SARs were only cutaneous, and 1 in the placebo group was also respiratory. Difference of SARs caused by the sting challenge was insignificant. Specific IgG levels increased significantly in both groups. Major allergen phospholipase A(2)-stimulated T cells from both groups showed a slightly decreased proliferation. The decrease in IFN-gamma and IL-13 levels with placebo was not prominent with LC, whereas IL-10 levels showed a significant increase in the LC group only. Decreased histamine receptor (HR)1/HR2 ratio in allergen-specific T cells on day 21 in the placebo group was prevented by LC. CONCLUSIONS: LC reduces side effects during dose increase without influencing the efficacy of BVIT. LC modulates the natural course of allergen-specific immune response and affects the expression of HRs and cytokine production by allergen-specific T cells.
Resumo:
Antigenic cross-reactivity has been described between the venom allergen (antigen 5) and mammalian testis proteins. Based on an allergen database we have previously shown that allergens can be represented by allergen motifs. A motif group was found containing venom antigen 5 sequences from different vespids. Using an optimized amino acid profile based on antigen 5 sequences for searching cross-reactive proteins, three human semen proteins belonging to the family of cysteine-rich secretory proteins (hCRISP) were found in the Swiss Protein database. To analyze antigenic cross-reactivity between antigen 5 and hCRISPs, antigen 5 from yellow jacket venom (Ves v 5) and two hCRISPs (CRISP-2 and -3) were chosen and produced as recombinant proteins in E. coli. A correlation was found between antibodies reacting with rVes v 5 and rhCRISP-2, -3 in a small human sera population indicating the presence of cross-reactive antibodies in human serum. Using intravenous immunoglobulin (IVIg), a therapeutic multidonor IgG preparation, cross-reactive antibodies were isolated that recognize rVes v 5, hCRISP-2 and -3 suggesting the presence of common epitopes between Ves v 5 and hCRISPs. However this cross-reactivity seems not to be linked to allergy to wasp venom as we could show no correlation between increasing CAP-class IgE level to wasp venom and IgG to sperm extract and hCRISPs. These data suggest that higher sensitization to wasp venom does not induce more antibodies against autoantigens and might not represent a higher risk to develop autoantibodies leading to infertility.
Resumo:
Cupiennins are small cationic a-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. To gain insight into the determinants responsible for the broad cytolytic activities, two analogues of cupiennin 1a with different N-terminal hydrophobicities were designed. The insecticidal, bactericidal and hemolytic activities of these analogues were assayed and compared to the native peptide. Specifically, substitution of two N-terminal Phe residues by Ala results in less pronounced insecticidal and cytolytic activity, whereas a substitution by Lys reduces strongly its bactericidal activity and completely diminishes its hemolytic activity up to very high tested concentrations. Biophysical analyses of peptide/bilayer membrane interactions point to distinct interactions of the analogues with lipid bilayers, and dependence upon membrane surface charge. Indeed, we find that lower hemolytic activity was correlated with less surface association of the analogues. In contrast, our data indicate that the reduced bactericidal activity of the two cupiennin 1a analogues likely correspond to greater bilayer-surface localization of the peptides. Overall, ultimate insertion and destruction of the host cell membrane is highly dependent on the presence of Phe-2 and Phe-6 (Cu 1a) or Leu-6 (Cu 2a) in the N-terminal sequences of native cupiennins.
Resumo:
The venom of the ctenid spider Cupiennius salei (Fig.16.1) is rich in components which belong to different functional groups. Besides low molecular mass compounds, the venom contains several disulphide-rich peptides, also called mini-proteins, which act as neurotoxins on ion channels or as enhancers of neurotoxins. Likewise, a variety of small cytolytic peptides, which destroy membranes very efficiently, and enzymes are present in the venom. Neurotoxins with cytolytic activity, cytolytic a-helical small cationic peptides and enzymes most probably attacking connective tissue and phospholipid membranes cause the overall cytotoxic effect of this venom. Synergistic and enhancing interactions between components enable the spider to achieve a maximum of toxicity with a minimum of venom quantity.
Resumo:
A 2-year-old German Holstein bull was identified as a carrier of a mutation within the X-chromosomal ED1 gene, which encodes a TNF-related signalling molecule mainly involved in ectodermal development. The clinicopathological appearance was associated with hypotrichosis, hypodontia, and a reduced number of eccrine glands, in addition to chronic rhinotracheitis and partial squamous metaplasia. Furthermore, for the first time in an ED1-deficient animal, a complete lack of respiratory mucous glands was observed. This suggests that the ED1 gene plays a role in the development of mucous glands, the absence of which resembles a feature of X-linked anhidrotic ectodermal dysplasia (ED1) in human patients.
Resumo:
STRUCTURE OF CUPIENNIUS SALEI VENOM HYALURONIDASE Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. FUNCTION OF VENOM HYALURONIDASES Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.