33 resultados para vähäliikenteinen tie


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through the marine isotope stages (MIS) 15-1. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed palaeoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. Here, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically dated Mediterranean marine and continental proxy records. The alternative age model presented here shows consistent differences with that initially proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this new age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how a detailed study of independent chronological tie points is important to align different records and to highlight asynchronisms of climate events. Moreover, Francke et al. (2016) have incorporated the new chronology proposed for tephra OH-DP-0499 in the final DEEP age model. This has reduced substantially the chronological discrepancies between the DEEP site age model and the model proposed here for the last glacial-interglacial transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Healthy replacement heifers are one of the foundations of a healthy dairy herd. Farm management andrearing systems in Switzerland provide a wide variety of factors that could potentially be associated withintramammary infections (IMI) in early lactating dairy heifers. In this study, IMI with minor mastitispathogens such as coagulase-negative staphylococci (CNS), contagious pathogens, and environmentalmajor pathogens were identified. Fifty-four dairy farms were enrolled in the study. A questionnaire wasused to collect herd level data on housing, management and welfare of young stock during farm isitsand interviews with the farmers. Cow-level data such as breed, age at first calving, udder condition andswelling, and calving ease were also recorded. Data was also collected about young stock that spent aperiod of at least 3 months on an external rearing farm or on a seasonal alpine farm. At the quarterlevel, teat conditions such as teat lesions, teat dysfunction, presence of a papilloma and teat lengthwere recorded. Within 24 h after parturition, samples of colostral milk from 1564 quarters (391 heifers)were collected aseptically for bacterial culture. Positive bacteriological culture results were found in 49%of quarter samples. Potential risk factors for IMI were identified at the quarter, animal and herd levelusing multivariable and multilevel logistic regression analysis. At the herd level tie-stalls, and at cow-level the breed category “Brown cattle” were risk factors for IMI caused by contagious major pathogenssuch as Staphylococcus aureus (S. aureus). At the quarter-level, teat swelling and teat lesions were highlyassociated with IMI caused by environmental major pathogens. At the herd level heifer rearing at externalfarms was associated with less IMI caused by major environmental pathogens. Keeping pregnant heifersin a separate group was negatively associated with IMI caused by CNS. The odds of IMI with coagulase-negative staphylococci increased if weaning age was less than 4 months and if concentrates were fed tocalves younger than 2 weeks. This study identified herd, cow- and quarter-level risk factors that may beimportant for IMI prevention in the future.