55 resultados para tris(pyrazolyl)borate ligands
Resumo:
Cannabinoid receptor 2 (CB(2) receptor) ligands are potential candidates for the therapy of chronic pain, inflammatory disorders, atherosclerosis, and osteoporosis. We describe the development of pharmacophore models for CB(2) receptor ligands, as well as a pharmacophore-based virtual screening workflow, which resulted in 14 hits for experimental follow-up. Seven compounds were identified with K(i) values below 25 microM. The CB(2) receptor-selective pyridine tetrahydrocannabinol analogue 8 (K(i) = 1.78 microM) was identified as a CB(2) partial agonist. Acetamides 12 (K(i) = 1.35 microM) and 18 (K(i) = 2.1 microM) represent new scaffolds for CB(2) receptor-selective antagonists and inverse agonists, respectively. Overall, our pharmacophore-based workflow yielded three novel scaffolds for the chemical development of CB(2) receptor ligands.
Resumo:
The synthesis and characterisation of copper(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*) and their use as catalysts in asymmetric cyclopropanation reactions are reported. All ligands and metal complexes were fully characterised, including crystal structures of some species determined by X-ray diffraction on single crystals. This allowed characterising the very different conformations of the macrocycles which could be induced by different substituents or by metal complexation. The strategy adopted for the ligand synthesis is very flexible allowing several structural modifications. A small library of macrocyclic ligands possessing the same donor properties but with either C-1 or C-2 symmetry was synthesized. Cyclopropane products with both aromatic and aliphatic olefins were obtained in good yields and enantiomeric excesses up to 99%.
Resumo:
Abstract Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid-binding Ig-like lectins Siglec-7 and -9 are MHC class I-independent inhibitory receptors on human NK cells that recognize sialic acid-containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell-sensitive tumor cells and, unexpectedly, of presumably NK cell-resistant tumor cells to NK cell-mediated cytotoxicity. Together, these observations have direct implications for NK cell-based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.
Resumo:
Medulloblastoma (MB), the most common pediatric malignant brain cancer, typically arises as pathological result of deregulated developmental pathways, including the NOTCH signaling cascade. Unlike the evidence supporting a role for NOTCH receptors in MB development, the pathological functions of NOTCH ligands remain largely unexplored. By examining the expression in large cohorts of MB primary tumors, and in established in vitro MB models, this research study demonstrates that MB cells bear abnormal levels of distinct NOTCH ligands. We explored the potential association between NOTCH ligands and the clinical outcome of MB patients, and investigated the rational of inhibiting NOTCH signaling by targeting specific ligands to ultimately provide therapeutic benefits in MB. The research revealed a significant over-expression of ligand JAG1 in the vast majority of MBs, and proved that JAG1 mediates pro-proliferative signals via activation of NOTCH2 receptor and induction of HES1 expression, thus representing an attractive therapeutic target. Furthermore, we could identify a clinically relevant association between ligand JAG2 and the oncogene MYC, specific for MYC-driven Group 3 MB cases. We describe for the first time a mechanistic link between the oncogene MYC and NOTCH pathway in MB, by identifying JAG2 as MYC target, and by showing that MB cells acquire induced expression of JAG2 through MYC-induced transcriptional activation. Finally, the positive correlation of MYC and JAG2 also with aggressive anaplastic tumors and highly metastatic MB stages suggested that high JAG2 expression may be useful as additional marker to identify aggressive MBs.
Resumo:
High throughput discovery of ligand scaffolds for target proteins can accelerate development of leads and drug candidates enormously. Here we describe an innovative workflow for the discovery of high affinity ligands for the benzodiazepine-binding site on the so far not crystallized mammalian GABAA receptors. The procedure includes chemical biology techniques that may be generally applied to other proteins. Prerequisites are a ligand that can be chemically modified with cysteine-reactive groups, knowledge of amino acid residues contributing to the drug-binding pocket, and crystal structures either of proteins homologous to the target protein or, better, of the target itself. Part of the protocol is virtual screening that without additional rounds of optimization in many cases results only in low affinity ligands, even when a target protein has been crystallized. Here we show how the integration of functional data into structure-based screening dramatically improves the performance of the virtual screening. Thus, lead compounds with 14 different scaffolds were identified on the basis of an updated structural model of the diazepam-bound state of the GABAA receptor. Some of these compounds show considerable preference for the α3β2γ2 GABAA receptor subtype.
Resumo:
Three-dimensional oxalate-based {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (0≤ x ≤ 1, ox = C2O42-, bpy = 2,2‘bipyridine) were synthesized. The structure was determined for x = 1 by X-ray diffraction on single crystal. The compound crystallizes in the cubic space group P4132. It shows a three-dimensional 10-gon 3-connected (10,3) anionic network where copper(II) has an unusual tris(bischelated) environment. X-ray powder diffraction patterns and their Rietveld refinement show that all the compounds along the series are isostructural and single-phased. According to X-ray absorption spectroscopy, copper(II) and nickel(II) have an octahedral environment, respectively elongated and trigonally distorted. As shown by natural circular dichroism, the optically active forms of {[Ru(bpy)3][CuxNi2(1-x)(ox)3]}n are obtained starting from resolved Δ- or Λ-[Ru(bpy)3]2+. The Curie−Weiss temperatures range between −55 (x = 1) and −150 K (x = 0). The antiferromagnetic exchange interaction thus decreases when the copper contents increases in agreement with the crystallographic structure of the compounds and the electronic structure of the metal ions. At low temperature, the compounds exhibit complex long-range ordered magnetic behavior.
Resumo:
We report here three examples of the reactivity of protic nucleophiles with diimine-type ligands in the presence of FeII salts. In the first case, the iron-promoted alcoholysis reaction of one nitrile group of the ligand 2,3-dicyano-5,6-bis(2-pyridyl)-pyrazine (L1) permitted the isolation of an stable E-imido−ester, [Fe(L1‘)2](CF3SO3)2 (1), which has been characterized by spectroscopic studies (IR, ES-MS, Mössbauer), elemental analysis, and crystallographically. Compound 1 consists of mononuclear octahedrally coordinated FeII complexes where the FeII ion is in its low-spin state. The iron-mediated nucleophilic attack of water to the asymmetric ligand 2,3-bis(2-pyridyl)pyrido[3,4-b]pyrazine (L2) has also been studied. In this context, the crystal structures of two hydration−oxidation FeIII products, [Fe(L2‘)2](ClO4)3·3CH3CN (2) and trans-[FeL2‘‘Cl2] (3), are described. Compounds 2 and 3 are both mononuclear FeIII complexes where the metals occupy octahedral positions. In principle, L2 is expected to coordinate to metal ions through its bipyridine-type units to form a five-membered ring; however, this is not the case in compounds 2 and 3. In 2, the ligand coordinates through its pyridines and through the hydroxyl group attached to the pyrazine imino carbon after hydration, that is, in an N,O,N tridentate manner. In compound 3, the ligand has suffered further transformations leading to a very stable diamido complex. In this case, the metal ion achieves its octahedral geometry by means of two pyridines, two amido N atoms, and two axial chlorine atoms. Magnetic susceptibility measurements confirmed the spin state of these two FeIII species: compounds 2 and 3 are low-spin and high-spin, respectively.