92 resultados para tree species richness and composition
Resumo:
Ancient lakes are often unusually species rich, mostly as a result of radiation and species-flock formation having taken place in only one or a few of many taxa present. Understanding why some taxa radiate and others do not is at the heart of understanding biodiversity. In this chapter I discuss possible explanations for disproportionally large species numbers in some cichlid fish lineages in East African Great Lakes: the halochromine cichlid fishes in Lakes Victoria and Malawi. I show that speciation rates in this group are higher than in any other lacustrine fish radiation. Against this background, I review hypotheses put forward to explain diversity in cichlid species flocks. The evolution of species diversity requires three processes: speciation, ecological radiation and anatomical diversification, and it is wrong to consider hypotheses that are relevant to different processes as alternatives to each other. The African cichlid species flocks show unusually high ecological species packing in several phylogenetic groups and unusually high speciation rates in haplochromines. Therefore, it maybe concluded that at least two evolutionary models are required to explain the difference between cichlid diversity and other fish diversity in East African Lakes: one for speciation in haplochromines and one for coexistence. Subsequently I review work on speciation in haplochromines, and in particular studies aimed at testing the hypothesis of speciation by sexual selection. Haplochromines have a polygynous mating system, conducive to sexual selection, but other polygynous cichlids are not particularly species rich. This suggests that more than just strong sexual selection is required to explain haplochromine species richness. Recent palaeoecological evidence undermines the previously popular hypotheses that explained the species richness of Lake Victoria in terms of speciation under varying natural or sexual selection regimes in satellite lakes or in isolated lake basins. I summarize experimental and comparative studies, which provide evidence for two mechanisms of sympatric speciation by disruptive sexual selection on polymorphic coloration. Such modes of speciation may explain (i) the high speciation rates in colour polymorphic lineages of haplochromine cichlids under conditions where colour variation is visible in clear water, and (ii) in combination with factors that affect population survival, the unusual species richness in haplochromine species flocks. I argue that sexual selection, if disruptive, can accelerate the pace of adaptive radiation because the resultant genetic population fragmentation allows a much increased rate of differential response to disruptive natural selection. Hence, the ecological pattern of diversity resembles that produced by disruptive natural selection, with the difference that disruptive sexual selection continues to cause (gross) speciation even after niche space is saturated. This may explain the unusually high numbers of very closely related and ecologically similar species in haplochromine species flocks. The role of disruptive sexual selection is twofold: it not only causes speciation, but also maintains reproductive isolation in sympatry between species that have evolved in sympatry or allopatry. Therefore, the maintenance of diversity in species flocks that originated through sexual selection depends on the persistence of the selection regime within the environmental signal space under which that diversity evolved.
Resumo:
This study explores whether the high variability of vascular plant diversity among alpine plant communities can be explained by stress and/or disturbance intensities. Species numbers of 14 alpine plant communities were sampled in the Swiss Alps. To quantify the intensity of 13 stress and 6 disturbance factors potentially controlling plant life in these communities, a survey was conducted by asking numerous specialists in alpine vegetation to assess the importance of the different factors for each community. The estimated values were combined in stress- and disturbance-indices which were compared with diversity according to the Intermediate Stress Hypothesis, the Intermediate Disturbance Hypothesis, and the Dynamic Equilibrium Model, respectively. Each of these theories explained a part of the variability in the species richness, but only the Dynamic Equilibrium Model provided a complete and consistent explanation. The last model suggests that community species richness within the alpine life zone is generally controlled by stress intensity. Disturbance and competition seem to play a secondary role by fine-tuning diversity in specific communities. As diversity is primarily limited by stress, a moderation of temperature-related stress factors, as a result of global warming, may cause a shift of the equilibrium between stress, disturbance, and competition in alpine ecosystems.
Resumo:
In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.
Resumo:
Lichens are very sensitive to habitat changes and their species richness is likely to decline under intensive land use. Currently, a comprehensive study analyzing lichen species richness in relation to land-use types, extending over different regions and including information on habitat variables, is missing for temperate grasslands. In three German regions we studied lichen species richness in 490 plots of 16 m2 representing different land-use types, livestock types, and habitat variables. Due to the absence of low-intensity pastures and substrates such as woody plants, deadwood and stones, there were no lichens in the 78 plots in Schorfheide-Chorin. In the two other regions, the richness of lichen species was 45 % higher in pastures than in meadows, and 77 % higher than in mown pastures, respectively. Among the pastures, the richness of all lichen species was on average 10 times higher in sheep-grazed pastures than in the ones grazed by cattle or horses. On average, the richness of all lichen species increased by 3.3 species per additional microhabitat. Furthermore, the richness of corticolous lichens increased by 1.2 species with 10 % higher cover of woody plants, lignicolous lichen species richness increased by 4.8 species with 1 % higher cover of deadwood, and saxicolous lichen species richness increased by 1.0 species with 1 % higher cover of stones. Our findings highlight the importance of low-intensity land use for lichen conservation. In particular, the degradation of grasslands rich in microhabitats and the destruction of lichen substrates by intensification, and conversion of unfertilized pastures formerly grazed at low intensity to meadows should be avoided to maintain lichen diversity.
Resumo:
• Regeneration of the dominant ectomycorrhizal tree Microberlinia bisulcata in groves in Korup, Central Africa, is very poor. The hypothesis was tested that this species is more shade intolerant than other co-occurring species. • In two 1-yr trials, each with M. bisulcata and four other species at a nursery close to Korup, growth was measured under five PAR levels, with ± added P and ± watering in the dry season. In parallel experiments the effects of PAR with two R : FR ratios were investigated. • Increasing PAR had a consistent effect on the rates of increase in plant mass and on changes in the other variables. Doubling soil P, watering and halving the R : FR ratio had almost no effect. However, across species, mass at low PAR and relative growth rate related positively and negatively, respectively, to seed mass. • One contributing factor for the poor recruitment of M. bisulcata is therefore its low survival and slow growth at low PAR, due to its small seed size. The two codominant ectomycorrhizal grove species of Tetraberlinia, with larger seeds, were less affected by low PAR.
Resumo:
Despite its appeal to explain plant invasions, the enemy release hypothesis (ERH) remains largely unexplored for tropical forest trees. Even scarcer are ERH studies conducted on the same host species at both the community and biogeographical scale, irrespective of the system or plant life form. In Cabrits National Park, Dominica, we observed patterns consistent with enemy release of two introduced, congeneric mahogany species, Swietenia macrophylla and S. mahagoni, planted almost 50 years ago. Swietenia populations at Cabrits have reproduced, with S. macrophylla juveniles established in and out of plantation areas at densities much higher than observed in its native range. Swietenia macrophylla juveniles also experienced significantly lower leaf-level herbivory (~3.0%) than nine co-occurring species native to Dominica (8.4–21.8%), and far lower than conspecific herbivory observed in its native range (11%–43%, on average). These complimentary findings at multiple scales support ERH, and confirm that Swietenia has naturalized at Cabrits. However, Swietenia abundance was positively correlated with native plant diversity at the seedling stage, and only marginally negatively correlated with native plant abundance for stems ≥1-cm dbh. Taken together, these descriptive patterns point to relaxed enemy pressure from specialized enemies, specifically the defoliator Steniscadia poliophaea and the shoot-borer Hypsipyla grandella, as a leading explanation for the enhanced recruitment of Swietenia trees documented at Cabrits.
Resumo:
While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.
Resumo:
Gluema korupensis Burgt (Sapotaceae), a new species from the southern part of Korup National Park in Cameroon, is described and illustrated. In total 176 trees 2 25 cm in stem diam. were found. The tree from which the holotype was collected was 42 m high and 125 cm in diam.; the largest tree was 238 cm in diam. The seeds are dispersed ballistically and sometimes by water
Resumo:
Community dynamics in a calcareous grassland (Mesobrometum) in Egerkingen (Jura mountains, Switzerland) were investigated for 53 non-woody species in 25 1-m2 plots over 6 years. 50 0.0 1-m2 subplots per plot were recorded. The derived variables were spatial frequency, temporal frequency, frequency fluctuation, turnover, and cumulative frequency (each species), and cumulative species richness (all species). Spectra for 53 species of all variables were different for the two investigated spatial scales (0.0 1 m2, 1 m2). The comparison with other investigations of similar grass lands showed that the behaviour of some species is specific for this type of vegetation in general (e.g. Achillea millefolium, Arrhenatherum elatius, Bromus erectus ), but most species behaved in a stand-specific way, i.e. they may play another (similar or completely different) role in another grassland stand. Six spatio-temporal patterns were defined across species. To understand community dynamics, not only the dynamics of mobility but also of frequency fluctuations and spatial distribution of the species are fundamental. In addition, the understanding of temporal behaviour of all species present should be included. Averages always hide important information of vegetation dynamics, as was shown by the present investigation.
Resumo:
Buttressing is a trait special to tropical trees but explanations for its occurrence remain inconclusive. The two main hypotheses are that they provide structural support and/or promote nutrient acquisition. Studies of the first are common but the second has received much less attention. Architectural measurements were made on adult and juvenile trees of the ectomycorrhizal species Microberlinia bisulcata, in Korup (Cameroon). Buttressing on this species is highly distinctive with strong lateral extension of surface roots of the juveniles leading to a mature buttress system of a shallow spreading form on adults. This contrasts with more vertical buttresses, closer to the stem, found on many other tropical tree species. No clear relationship between main buttress and large branch distribution was found. Whilst this does not argue against the essential structural role of buttresses for these very large tropical trees, the form on M. bisulcata does suggest a likely second role, that of aiding nutrient acquisition. At the Korup site, with its deep sandy soils of very low phosphorus status, and where most nutrient cycling takes place in a thin surface layer of fine roots and mycorrhizas, it appears that buttress form could develop from soil-surface root exploration for nutrients by juvenile trees. It may accordingly allow M. bisulcata to attain the higher greater competitive ability, faster growth rate, and maximum tree size that it does compared with other co-occurring tree species. For sites across the tropics in general, the degree of shallowness and spatial extension of buttresses of the dominant species is hypothesized to increase with decreasing nutrient availability.
Resumo:
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.
Resumo:
In many environments land use intensification is likely to result in a decrease in species richness and in an increase in eutrophication. Although the importance of both factors for higher trophic levels such as insect herbivores is well documented, their impact has rarely been studied in combination. Herbivorous insects have a strong impact on the functioning of ecosystems and it is therefore important to understand how they are affected by eutrophication in high or low diversity environments. We used a grassland biodiversity experiment to investigate the combined effect of fertilization and plant diversity loss on the fitness of the generalist grasshopper Chorthippus parallelus by rearing grasshopper nymphs for four weeks in cages on unfertilized or fertilized (NPK) subplots across a species richness gradient from 1 to 60 plant species. Survival, the number of oothecae, body mass and the number of hatchlings were measured separately for each cage. Plant diversity had no effect on any of the grasshopper fitness measures, neither in unfertilized nor in fertilized plots. NPK-fertilization reduced grasshopper survival but increased body mass of males and reproductive success of the surviving females. Fertilization effects were not mediated by plant community structure, productivity or composition, suggesting that higher food plant quality was one of the main drivers. There was no interaction between plant diversity and fertilization on any of the measures. In conclusion, an increase in eutrophication, in both species-rich and species-poor grasslands, could lead to higher reproductive success and therefore higher abundances of herbivorous insects including insect pests, with fertilization effects dominating plant diversity effects.
Resumo:
Climate, land use and fire are strong determinants of plant diversity, potentially resulting in local extinctions, including rare endemic and economically valuable species. While climate and land use are decisive for vegetation composition and thus the species pool, fire disturbance can lead to landscape fragmentation, affecting the provisioning of important ecosystem services such as timber and raw natural resources. We use multi-proxy palaeoecological data with high taxonomic and temporal resolution across an environmental gradient to assess the long-term impact of major climate shifts, land use and fire disturbance on past vegetation openness and plant diversity (evenness and richness). Evenness of taxa is inferred by calculating the probability of interspecific encounter (PIE) of pollen and spores and species richness by palynological richness (PRI). To account for evenness distortions of PRI, we developed a new palaeodiversity measure, which is evenness-detrended palynological richness (DE-PRI). Reconstructed species richness increases from north to south regardless of time, mirroring the biodiversity increase across the gradient from temperate deciduous to subtropical evergreen vegetation. Climatic changes after the end of the last ice age contributed to biodiversity dynamics, usually by promoting species richness and evenness in response to warming. The data reveal that the promotion of diverse open-land ecosystems increased when human disturbance became determinant, while forests became less diverse. Our results imply that the today’s biodiversity has been shaped by anthropogenic forcing over the millennia. Future management strategies aiming at a successful conservation of biodiversity should therefore consider the millennia-lasting role of anthropogenic fire and human activities.
Resumo:
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.
Resumo:
Land use and land use change affect deadwood amount, quality and associated biodiversity in forest ecosystems. Old growth or virgin forests, which are exceptionally rare in temperate Europe harbor more deadwood and associated fungal species than managed forests. Whether and how more recent abandonment of management, to reestablish more natural forests, affects deadwood amount and fungal diversity on deadwood is unknown. Our main aim was to compare deadwood amount, characteristics and deadwood inhabiting fungi in differently managed forest types typical for large areas of Central Europe. We sampled deadwood inhabiting fungi on 27 forest plots of 400 m2 each in three geographically distant regions in Germany. Three forest management types, namely managed coniferous, managed deciduous and unmanaged deciduous forests, were represented by nine plots each. In autumn 2008 we collected all fungal fruiting bodies on deadwood >7 cm of diameter. We found deadwood amounts and fungal species numbers in unmanaged forests to be lower than in managed forests, which we attributed to the lack of natural tree death during the short time since management abandonment of usually 10–30 years. However, rarefaction analysis among deadwood items in forest plots indicated a slightly higher species density in unmanaged forests, which may be the first signal of a positive effect on fungal species richness on deadwood after management was abandoned. Although the three study regions span a large geographical gradient, we did not detect differences in the fungal species composition or in deadwood amounts and patterns, which reflects the wide distribution of this group of organisms and points to consistent management procedures among study regions. A very clear composition difference however occurred between deciduous and coniferous wood showing species substrate specialization. We conclude that the amount of deadwood is the main driver of deadwood fungal species richness, and substrate diversity in terms of various decay degrees, deadwood tree species and deadwood size are also important. Thus, to promote species richness of deadwood fungi it is vital to enhance deadwood amounts and diversity