37 resultados para total protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganicN(IN, ammonium, nitrate) and organicN(ON, e. g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Copper and its main transport protein ceruloplasmin have been suggested to promote the development of atherosclerosis. Most of the data come from experimental and animal model studies. Copper and mortality have not been simultaneously evaluated in patients undergoing coronary angiography. METHODS AND RESULTS We examined whether serum copper and ceruloplasmin concentrations are associated with angiographic coronary artery disease (CAD) and mortality from all causes and cardiovascular causes in 3253 participants of the Ludwigshafen Risk and Cardiovascular Health Study. Age and sex-adjusted hazard ratios (HR) for death from any cause were 2.23 (95% CI, 1.85-2.68) for copper and 2.63 (95% CI, 2.17-3.20) for ceruloplasmin when we compared the highest with the lowest quartiles. Corresponding hazard ratios (HR) for death from cardiovascular causes were 2.58 (95% CI, 2.05-3.25) and 3.02 (95% CI, 2.36-3.86), respectively. Further adjustments for various risk factors and clinical variables considerably attenuated these associations, which, however, were still statistically significant and the results remained consistent across subgroups. CONCLUSIONS The elevated concentrations of both copper and ceruloplasmin are independently associated with increased risk of mortality from all causes and from cardiovascular causes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of total urinary proteins in individuals that tested positive by urinary dipstick is a typical method for assessing the presence of potentially serious renal disorders. In the absence of such overt proteinuria, however, measurement of specific urinary proteins may be useful in the diagnosis of nephropathies and may provide greater insight into the pathogenesis. The urine of 28 dogs (16 with renal disease and 12 healthy) was evaluated to determine whether specific low-molecular-weight proteins or the pattern of protein excretion could also be used as a marker of tubular dysfunction in dogs. Specific proteins were assessed by immunological methods, whereas protein profiles were determined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (MS). In particular, changes in the excretion of retinol-binding protein (RBP) and Tamm-Horsfall protein (THP) appear to be of clinical relevance in the diagnosis of canine kidney diseases. The pattern of urinary protein and peptides revealed specific changes in abundance in dogs with renal disease at molecular masses (kD) of 11.58, 12.41, 12.60, 14.58, 20.95 (RBP), 27.85, and 65.69 (albumin). In conclusion, comparable proteins as in humans might be used as urinary markers for proximal (RBP) and distal (THP) tubular dysfunction in dogs. Surface-enhanced laser desorption/ionization time-of-flight MS is a promising tool for the study of kidney physiology and pathophysiology and might aid in the discovery of new biomarkers of renal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Proteinuria (PTU) is an important marker for the development and progression of renal disease, cardiovascular disease and death, but there is limited information about the prevalence and factors associated with confirmed PTU in predominantly white European HIV+ persons, especially in those with an estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73 m(2). PATIENTS AND METHODS Baseline was defined as the first of two consecutive dipstick urine protein (DPU) measurements during prospective follow-up >1/6/2011 (when systematic data collection began). PTU was defined as two consecutive DUP >1+ (>30 mg/dL) >3 months apart; persons with eGFR <60 at either DPU measurement were excluded. Logistic regression investigated factors associated with PTU. RESULTS A total of 1,640 persons were included, participants were mainly white (n=1,517, 92.5%), male (n=1296, 79.0%) and men having sex with men (n=809; 49.3%). Median age at baseline was 45 (IQR 37-52 years), and CD4 was 570 (IQR 406-760/mm(3)). The median baseline date was 2/12 (IQR 11/11-6/12), and median eGFR was 99 (IQR 88-109 mL/min/1.73 m(2)). Sixty-nine persons had PTU (4.2%, 95% CI 3.2-4.7%). Persons with diabetes had increased odds of PTU, as were those with a prior non-AIDS (1) or AIDS event and those with prior exposure to indinavir. Among females, those with a normal eGFR (>90) and those with prior abacavir use had lower odds of PTU (Figure 1). CONCLUSIONS One in 25 persons with eGFR>60 had confirmed proteinuria at baseline. Factors associated with PTU were similar to those associated with CKD. The lack of association with antiretrovirals, particularly tenofovir, may be due to the cross-sectional design of this study, and additional follow-up is required to address progression to PTU in those without PTU at baseline. It may also suggest other markers are needed to capture the deteriorating renal function associated with antiretrovirals may be needed at higher eGFRs. Our findings suggest PTU is an early marker for impaired renal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is aimed at elucidating the effect of mannitol and cold treatments on P uptake and protein phosphorylation in Lemna minor plants. Duckweed p lants were incu bated in the presence of [32P]or [33P]Pi in half-strength phosphate deprived E-medium under constant light regime for 1.5 h. Total plant protein extracts (pellet and supernatant) were then prepared and subjected to IEF x SDS-PAGE. To analyse the effect of the stresses on P uptake and protein labelling, Lemna minor plants were preincubated with 0.1, 0.5 mol · L-1 mannitol and at 4°C respectively, for 4 hours, before adding labelled orthophosphate. The results show that the general protein phosphorylation (including LHCII) is related to the level of P uptake. Radioactive phosphate incorporation is stimulated by a low concentration of mannitol (0.1 mol · L-1) but reduced by 0.5 mol · L-1 mannitol and cold stress in planta. The labelling into proteins is affected neither when stresses were applied to the plants after incubation with labelled orthophosphate, nor after in vitro protein phosphorylation. This indicates that general protein kinase activities in vivo are strictly limited by P uptake. A marked accumulation of soluble hexoses (mainly sucrose, glucose, and fructose) is observed under imposed stress, suggesting that the inhibition of P uptake in response to hyperosmotic and cold stresses is mediated by sugar accumulation in situ. However, metabolisable sugars like glucose did not alter the entry of phosphate at concentrations of 0.5 mol · L-1, showing that the chemical nature of the osmoticum influences P uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective was to determine the coordination of transcript and/or protein abundances of stromal enzymes during leaf senescence. First trifolioliate leaves of Phaseolus vulgaris L. plants were sampled beginning at the time of full leaf expansion; at this same time, half of the plants were switched to a nutrient solution lacking N. Total RNA and soluble protein abundances decreased after full leaf expansion whereas chlorophyll abundance remained constant; N stress enhanced the decline in these traits. Abundances of ribulose-1,5-bisposphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39), Rubisco activase and phosphoribulokinase (Ru5P kinase; EC 2.7.1.19) decreased after full leaf expansion in a coordinated manner for both treatments. In contrast, adenosine diphosphate glucose (ADPGlc) pyrophosphorylase (EC 2.7.7.27) abundance was relatively constant during natural senescence but did decline similar to the other enzymes under N stress. Northern analyses indicated that transcript abundances for all enzymes declined markedly on a fresh-weight basis just after full leaf expansion. This rapid decline was particularly strong for the Rubisco small subunit (rbcS) transcript. The decline was enhanced by N stress for rbcS and Rubisco activase (rca), but not for Ru5P kinase (prk) and ADPGlc pyrophosphorylase (agp). Transcripts of the Clp protease subunits clpC and clpP declined in abundance just after full leaf expansion, similar to the other mRNA species. When Northern blots were analyzed using equal RNA loads, rbcS transcripts still declined markedly just after full leaf expansion whereas rca and clpC transcripts increased over time. The results indicated that senescence was initiated near the time of full leaf expansion, was accelerated by N stress, and was characterized by large decline in transcripts of stromal enzymes. The decreased mRNA abundances were in general associated with steadily declining stromal protein abundances, with ADPGlc pyrophosphorylase being the notable exception. Transcript analyses for the Clp subunits supported a recent report (Shanklin et al., 1995, Plant Cell 7: 1713--1722) indicating that the Clp protease subunits were constitutive throughout development and suggested that ClpC and ClpP do not function as a senescence-specific proteolytic system in Phaseolus.