35 resultados para tidal mixing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Monitoring breathing pattern is especially relevant in infants with lung disease. Recently, a vest-based inductive plethysmograph system (FloRight®) has been developed for tidal breathing measurement in infants. We investigated the accuracy of tidal breathing flow volume loop (TBFVL) measurements in healthy term-born infants and infants with lung disease by the vest-based system in comparison to an ultrasonic flowmeter (USFM) with a face mask. We also investigated whether the system discriminates between healthy infants and those with lung disease. METHODS Floright® measures changes in thoracoabdominal volume during tidal breathing through magnetic field changes generated by current-carrying conductor coils in an elastic vest. Simultaneous TBFVL measurements by the vest-based system and the USFM were performed at 44 weeks corrected postmenstrual age during quiet unsedated sleep. TBFVL parameters derived by both techniques and within both groups were compared. RESULTS We included 19 healthy infants and 18 infants with lung disease. Tidal volume per body weight derived by the vest-based system was significantly lower with a mean difference (95% CI) of -1.33 ml/kg (-1.73; -0.92), P < 0.001. Respiratory rate and ratio of time to peak tidal expiratory flow over total expiratory time (tPTEF/tE) did not differ between the two techniques. Both systems were able to discriminate between healthy infants and those with lung disease using tPTEF/tE. CONCLUSION FloRight® accurately measures time indices and may discriminate between healthy infants and those with lung disease, but demonstrates differences in tidal volume measurements. It may be better suited to monitor breathing pattern than for TBFVL measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-cell intercalation is used in several developmental processes to shape the normal body plan. There is no clear evidence that intercalation is involved in pathologies. Here we use the proto-oncogene myc to study a process analogous to early phase of tumour expansion: myc-induced cell competition. Cell competition is a conserved mechanism driving the elimination of slow-proliferating cells (so-called 'losers') by faster-proliferating neighbours (so-called 'winners') through apoptosis and is important in preventing developmental malformations and maintain tissue fitness. Here we show, using long-term live imaging of myc-driven competition in the Drosophila pupal notum and in the wing imaginal disc, that the probability of elimination of loser cells correlates with the surface of contact shared with winners. As such, modifying loser-winner interface morphology can modulate the strength of competition. We further show that elimination of loser clones requires winner-loser cell mixing through cell-cell intercalation. Cell mixing is driven by differential growth and the high tension at winner-winner interfaces relative to winner-loser and loser-loser interfaces, which leads to a preferential stabilization of winner-loser contacts and reduction of clone compactness over time. Differences in tension are generated by a relative difference in F-actin levels between loser and winner junctions, induced by differential levels of the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate. Our results establish the first link between cell-cell intercalation induced by a proto-oncogene and how it promotes invasiveness and destruction of healthy tissues.