34 resultados para subwavelength -diameter terahertz hollow optical fiber


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The population of space debris increased drastically during the last years. Collisions involving massive objects may produce large number of fragments leading to significantly growth of the space debris population. An effective remediation measure in order to stabilize the population in LEO, is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period and spin axis orientation. If we observe a rotating object, the observer sees different surface areas of the object which leads to changes in the measured intensity. Rotating objects will produce periodic brightness vari ations with frequencies which are related to the spin periods. Photometric monitoring is the real tool for remote diagnostics of the satellite rotation around its center of mass. This information is also useful, for example, in case of contingency. Moreover, it is also important to take into account the orientation of non-spherical body (e.g. space debris) in the numerical integration of its motion when a close approach with the another spacecr aft is predicted. We introduce the two databases of light curves: the AIUB data base, which contains about a thousand light curves of LEO, MEO and high-altitude debris objects (including a few functional objects) obtained over more than seven years, and the data base of the Astronomical Observatory of Odessa University (Ukraine), which contains the results of more than 10 years of photometric monitoring of functioning satellites and large space debris objects in low Earth orbit. AIUB used its 1m ZIMLAT telescope for all light curves. For tracking low-orbit satellites, the Astronomical Observatory of Odessa used the KT-50 telescope, which has an alt-azimuth mount and allows tracking objects moving at a high angular velocity. The diameter of the KT-50 main mirror is 0.5 m, and the focal length is 3 m. The Odessa's Atlas of light curves includes almost 5,5 thousand light curves for ~500 correlated objects from a time period of 2005-2014. The processing of light curves and the determination of the rotation period in the inertial frame is challenging. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for confirmation, will be presented. The rotation of the Envisat satellite after its sudden failure will be analyzed. The deceleration of its rotation rate within 3 years is studied together with the attempt to determine the orientation of the rotation axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new fiber-optical approach for reflection based refractive index mapping. Our approach leads to improved stability and reliability over existing free-space confocal instruments and significantly cuts alignment efforts and reduces the number of components needed. Other than properly cleaved fiber end-faces, this setup requires no additional sample preparation. The instrument is calibrated by means of a set of samples with known refractive indices. The index steps of commercially available fibers are measured accurately down to < 10⁻³. The precision limit of the instrument is currently of the order of 10⁻⁴.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To differentiate diabetic macular edema (DME) from pseudophakic cystoid macular edema (PCME) based solely on spectral-domain optical coherence tomography (SD-OCT). METHODS: This cross-sectional study included 134 participants: 49 with PCME, 60 with DME, and 25 with diabetic retinopathy (DR) and ME after cataract surgery. First, two unmasked experts classified the 25 DR patients after cataract surgery as either DME, PCME, or mixed-pattern based on SD-OCT and color-fundus photography. Then all 134 patients were divided into two datasets and graded by two masked readers according to a standardized reading-protocol. Accuracy of the masked readers to differentiate the diseases based on SD-OCT parameters was tested. Parallel to the masked readers, a computer-based algorithm was established using support vector machine (SVM) classifiers to automatically differentiate disease entities. RESULTS: The masked readers assigned 92.5% SD-OCT images to the correct clinical diagnose. The classifier-accuracy trained and tested on dataset 1 was 95.8%. The classifier-accuracy trained on dataset 1 and tested on dataset 2 to differentiate PCME from DME was 90.2%. The classifier-accuracy trained and tested on dataset 2 to differentiate all three diseases was 85.5%. In particular, higher central-retinal thickness/retinal-volume ratio, absence of an epiretinal-membrane, and solely inner nuclear layer (INL)-cysts indicated PCME, whereas higher outer nuclear layer (ONL)/INL ratio, the absence of subretinal fluid, presence of hard exudates, microaneurysms, and ganglion cell layer and/or retinal nerve fiber layer cysts strongly favored DME in this model. CONCLUSIONS: Based on the evaluation of SD-OCT, PCME can be differentiated from DME by masked reader evaluation, and by automated analysis, even in DR patients with ME after cataract surgery. The automated classifier may help to independently differentiate these two disease entities and is made publicly available.