52 resultados para studies in human society
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.
Resumo:
Here we investigate the expression of OCT4 human lung adenocarcinoma and bronchioloalveolar carcinoma (BAC) tumor biopsies and tumor-derived primary cell cultures. OCT4 has been detected in several human tumors suggesting a potentially critical role in tumorigenesis. We assessed the presence of OCT4 in clinical tumor samples of both adenocarcinoma and BAC at the cellular and transcriptional levels, respectively. Furthermore, we evaluated tumor-derived cell cultures for potential differences in OCT4 expression. Immunohistochemical analysis depicted OCT4 in 2 of 8 adenocarcinoma tumor samples and 3 of 5 BAC tumor samples, with no apparent difference in the degree of expression among the sections examined. These results were validated by transcript analysis. Flow cytometric assessment of 11 adenocarcinoma-derived cell cultures and 3 BAC-derived cell cultures revealed significantly higher OCT4 expression in adenocarcinoma tumors compared to their normal counterparts. This, however, was not observed in the BAC cultures. Comparative studies of OCT4 in adenocarcinoma and BAC tumor cell cultures demonstrated a dramatically higher expression in the former. The expression of OCT4 may represent a specific and effective target for therapeutic intervention in adenocarcinoma and BAC. In addition, the aberrant expression and distribution of OCT4 may indicate important parameters concerning the differences between adenocarcinoma and BAC.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
OBJECTIVE: Cathepsin W (CatW, lymphopain) is a putative cysteine protease with restricted expression to natural killer (NK) cells and CD8(+) T cells and so far unknown function and properties. Here, we characterize in detail, the regulation of human CatW during T-cell development in response to different stimuli and its functional involvement in cytotoxic lymphocyte effector function. MATERIALS AND METHODS: Western blots and real time polymerase chain reaction of sorted, unstimulated, and stimulated cell subsets (thymocytes, T cells, NK cells) and their culture supernatants were used to study regulation and expression of CatW. Primary CD8(+) T cells and short-term T-cell lines were transfected with small interfering RNA to study the involvement of CatW in effector function such as target cell killing and interferon-gamma production. RESULTS: Levels of CatW expression correlate closely with cytotoxic capacity both during development and in response to factors influencing cytotoxicity. Furthermore, CatW is secreted during specific target cell killing. However, knockdown of CatW expression by small interfering RNA neither influences target cell killing nor interferon-gamma production. CONCLUSION: Despite being expressed in the effector subset of CD8(+) and NK cells and of being released during target cell killing, our functional inhibition studies exclude an essential role of CatW in the process of cytotoxicity.
Resumo:
Cancer is caused by a complex pattern of molecular perturbations. To understand the biology of cancer, it is thus important to look at the activation state of key proteins and signaling networks. The limited amount of available sample material from patients and the complexity of protein expression patterns make the use of traditional protein analysis methods particularly difficult. In addition, the only approach that is currently available for performing functional studies is the use of serial biopsies, which is limited by ethical constraints and patient acceptance. The goal of this work was to establish a 3-D ex vivo culture technique in combination with reverse-phase protein microarrays (RPPM) as a novel experimental tool for use in cancer research. The RPPM platform allows the parallel profiling of large numbers of protein analytes to determine their relative abundance and activation level. Cancer tissue and the respective corresponding normal tissue controls from patients with colorectal cancer were cultured ex vivo. At various time points, the cultured samples were processed into lysates and analyzed on RPPM to assess the expression of carcinoembryonic antigen (CEA) and 24 proteins involved in the regulation of apoptosis. The methodology displayed good robustness and low system noise. As a proof of concept, CEA expression was significantly higher in tumor compared with normal tissue (p<0.0001). The caspase 9 expression signal was lower in tumor tissue than in normal tissue (p<0.001). Cleaved Caspase 8 (p=0.014), Bad (p=0.007), Bim (p=0.007), p73 (p=0.005), PARP (p<0.001), and cleaved PARP (p=0.007) were differentially expressed in normal liver and normal colon tissue. We demonstrate here the feasibility of using RPPM technology with 3-D ex vivo cultured samples. This approach is useful for investigating complex patterns of protein expression and modification over time. It should allow functional proteomics in patient samples with various applications such as pharmacodynamic analyses in drug development.
Resumo:
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Resumo:
Progressive multifocal leukoencephalopathy (PML) is a frequently fatal disease caused by uncontrolled polyomavirus JC (JCV) in severely immunodeficient patients. We investigated the JCV-specific cellular and humoral immunity in the Swiss HIV Cohort Study. We identified PML cases (n = 29), as well as three matched controls per case (n = 87), with prospectively cryopreserved peripheral blood mononuclear cells and plasma at diagnosis. Nested controls were matched according to age, gender, CD4(+) T-cell count, and decline. Survivors (n = 18) were defined as being alive for >1 year after diagnosis. Using gamma interferon enzyme-linked immunospot assays, we found that JCV-specific T-cell responses were lower in nonsurvivors than in their matched controls (P = 0.08), which was highly significant for laboratory- and histologically confirmed PML cases (P = 0.004). No difference was found between PML survivors and controls or for cytomegalovirus-specific T-cell responses. PML survivors showed significant increases in JCV-specific T cells (P = 0.04) and immunoglobulin G (IgG) responses (P = 0.005). IgG responses in survivors were positively correlated with CD4(+) T-cell counts (P = 0.049) and negatively with human immunodeficiency virus RNA loads (P = 0.03). We conclude that PML nonsurvivors had selectively impaired JCV-specific T-cell responses compared to CD4(+) T-cell-matched controls and failed to mount JCV-specific antibody responses. JCV-specific T-cell and IgG responses may serve as prognostic markers for patients at risk.
Resumo:
Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1 alpha (CCL3), MIP-1 beta (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1 alpha and MIP-1 beta degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu(58) to Trp(59) bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1 beta hybrids indicated that processing of MIP-1 beta might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1 alpha, MIP-1 beta, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes.
Resumo:
It has previously been published that interferon-α (type I IFN) improves clinical symptoms of asthma patients. Since human basophils are major inflammatory cells in maintaining chronic allergic asthma we investigate whether type I IFN affect human blood basophils. Furthermore, previous studies have shown that spontaneous apoptosis of human basophils is slow due to constitutive expression of anti-apoptotic BCL-2 family members. In addition, IL-3 exceptionally promotes survival of basophils by enhancing constitutive expression of BCL-2 family members and by inducing de-novo expression of Pim-1 kinase. Thus, we also assessed whether type I IFN might overcome IL-3-induced survival of human basophils. Our data show that type I IFN enhances apoptosis in purified human blood basophils compared to spontaneous apoptosis of controls or type II IFN treated cells. Furthermore, we demonstrate that both type I IFN and FasL enhance apoptosis in human basophils with similar efficiency in a rather additive than synergistic way. Analyses of signaling pathways reveal that type I IFN promote prolonged phosphorylation of STAT1/STAT2. By using a pan-JAK inhibitor the phosphorylation of STAT1/STAT2 is inhibited and most importantly the pro-apoptotic effect of type I IFN is abolished. On the other hand, type I IFN do not reduce IL-3-induced de novo expression of Pim-1 and BCL-2. This is in line with our observation that IL-3-induced survival is dominant over type I IFN-enhanced apoptosis. In addition, phosphorylation of p38 MAPK in type I IFN treated cells is comparable to non-treated cells. Particularly however, inhibition of this p-p38 activity abrogates apoptosis as well. We conclude that type I IFN-enhanced apoptosis is tightly regulated by the cooperation of JAK/STAT and p38 MAPK pathways. Our study identifies a so far unknown effect of type I IFN and may explain the improved clinical symptoms of asthma patients treated with type I IFN.
Resumo:
Sirtuins (SIRT1-7) are a highly conserved family of NAD(+)-dependent enzymes that control the activity of histone and nonhistone regulatory proteins. SIRT1 is purposed to promote longevity and to suppress the initiation of some cancers. Nevertheless, SIRT1 is reported to function as a tumor suppressor as well as an oncogenic protein. Our data show that compared with normal liver or surrounding tumor tissue, SIRT1 is strongly overexpressed in human hepatocellular carcinoma (HCC). In addition, human HCC cell lines (Hep3B, HepG2, HuH7, HLE, HLF, HepKK1, skHep1) were screened for the expression of the sirtuin family members and only SIRT1 was consistently overexpressed compared with normal hepatocytes. To determine its effect on HCC growth, SIRT1 activity was inhibited either with lentiviruses expressing short hairpin RNAs or with the small molecule inhibitor, cambinol. Knockdown or inhibition of SIRT1 activity had a cytostatic effect, characterized by an altered morphology, impaired proliferation, an increased expression of differentiation markers, and cellular senescence. In an orthotopic xenograft model, knockdown of SIRT1 resulted in 50% fewer animals developing tumors and cambinol treatment resulted in an overall lower tumor burden. Taken together, our data show that inhibition of SIRT1 in HCC cells impairs their proliferation in vitro and tumor formation in vivo. These data suggest that SIRT1 expression positively influences the growth of HCC and support further studies aimed to block its activity alone or in combination as a novel treatment strategy.
Resumo:
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.
Resumo:
In eukaryotic cells, translation of messenger RNA (mRNA) can be initiated either on transcripts associated with the cap-binding complex (CBC; consisting of CBP80 and CBP20) or on transcripts with the eukaryotic translation initiation factor (eIF) 4E bound to the cap. Together with eIF4G and eIF4A, eIF4E forms the eIF4F-complex, which mediates translation initiation during the bulk of cellular protein synthesis. Functionally substituting for eIF4G, the CBP80/20-dependent translation initiation factor (CTIF) has been reported to be part of the CBC-dependent translation initiation complex 1,2. CTIF consists of a N-terminal CBP80-binding domain and a conserved C-terminal MIF4G domain 1. This MIF4G domain has been shown to mediate the interaction between CTIF and different factors such as eIF3g and the stem-loop binding protein (SLBP) 2,3. Here we provide evidence that CTIF, besides its function in translation initiation, is also involved in mRNA translocation from the nucleus to the cytoplasm, possibly through a direct interaction with the nuclear export factor NFX1/TAP. Taken together our results suggest that CTIF can function as a platform that interacts with proteins involved in different steps of the mRNA metabolism.
Resumo:
Adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), are molecules, which are produced in adipose tissue. Recent studies suggest that NAMPT might also be produced in the tooth-supporting tissues, that is, periodontium, which also includes the gingiva. The aim of this study was to examine if and under what conditions NAMPT is produced in gingival fibroblasts and biopsies from healthy and inflamed gingiva. Gingival fibroblasts produced constitutively NAMPT, and this synthesis was significantly increased by interleukin-1β and the oral bacteria P. gingivalis and F. nucleatum. Inhibition of the MEK1/2 and NFκB pathways abrogated the stimulatory effects of F. nucleatum on NAMPT. Furthermore, the expression and protein levels of NAMPT were significantly enhanced in gingival biopsies from patients with periodontitis, a chronic inflammatory infectious disease of the periodontium, as compared to gingiva from periodontally healthy individuals. In summary, the present study provides original evidence that gingival fibroblasts produce NAMPT and that this synthesis is increased under inflammatory and infectious conditions. Local synthesis of NAMPT in the inflamed gingiva may contribute to the enhanced gingival and serum levels of NAMPT, as observed in periodontitis patients. Moreover, local production of NAMPT by gingival fibroblasts may represent a possible mechanism whereby periodontitis may impact on systemic diseases.