33 resultados para string topology
Resumo:
Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
Resumo:
Recently a new method to set the scale in lattice gauge theories, based on the gradient flow generated by the Wilson action, has been proposed, and the systematic errors of the new scales t0 and w0 have been investigated by various groups. The Wilson flow provides also an interesting alternative smoothing procedure particularly useful for the measurement of the topological charge as a pure gluonic observable. We show the viability of this method for N=1 supersymmetric Yang-Mills theory by analysing the configurations produced by the DESY-Muenster Collaboration. The relation between the scale and the topological charge has been investigated showing a strong correlation. We have found that the scale has a linear dependence on the topological charge, the slope of which increases decreasing the volume and the gluino mass. Moreover we have investigated this dependence as a function of the reference parameter used to define the scale: the tuning of this parameter turns out to be fundamental for a more reliable scale setting. Similar conclusions hold for the Sommer parameter r0.