93 resultados para sphinogsine-1-phosphate (S1P)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: FTY720 is a potent immunomodulatory prodrug that is converted to its active phosphorylated form by a sphingosine kinase. Here we have studied whether FTY720 mimicked the action of sphingosine-1-phosphate (S1P) and exerted an anti-inflammatory potential in renal mesangial cells. EXPERIMENTAL APPROACH: Prostaglandin E(2) (PGE(2)) was quantified by an enzyme-linked immunosorbent-assay. Secretory phospholipase A(2) (sPLA(2)) protein was detected by Western blot analyses. mRNA expression was determined by Northern blot analysis and sPLA(2)-promoter activity was measured by a luciferase-reporter-gene assay. KEY RESULTS: Stimulation of cells for 24 h with interleukin-1beta (IL-1beta) is known to trigger increased PGE(2) formation which coincides with an induction of the mRNA for group-IIA-sPLA(2) and protein expression. FTY720 dose-dependently suppressed IL-1beta-induced IIA-sPLA(2) protein secretion and activity in the supernatant. This effect is due to a suppression of cytokine-induced sPLA(2) mRNA expression which results from a reduced promoter activity. As a consequence of suppressed sPLA(2) activity, PGE(2) formation is also reduced by FTY720. Mechanistically, the FTY720-suppressed sPLA(2) expression results from an activation of the TGFbeta/Smad signalling cascade since inhibition of the TGFbeta receptor type I by a specific kinase inhibitor reverses the FTY720-mediated decrease of sPLA(2) protein expression and sPLA(2) promoter activity. CONCLUSIONS AND IMPLICATIONS: In summary, our data show that FTY720 was able to mimic the anti-inflammatory activity of TGFbeta and blocked cytokine-triggered sPLA(2) expression and subsequent PGE(2) formation. Thus, FTY720 may exert additional in vivo effects besides the well reported immunomodulation and its anti-inflammatory potential should be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Glycerophospholipids and sphingolipids are structurally heterogeneous due to differences in the O- and N-linked fatty acids and head groups. Sphingolipids also show a heterogeneity in their sphingoid base composition which up to now has been little appreciated. The aim of this study was to investigate the association of certain glycerophospholipid and sphingolipid species with stable coronary artery disease (CAD) and acute myocardial infarction (AMI). METHODS The lipid profile in plasma from patients with stable CAD (n = 18) or AMI (n = 17) was compared to healthy subjects (n = 14). Sixty five glycerophospholipid and sphingolipid species were quantified by LC-MS. The relative distribution of these lipids into lipoprotein fractions was analyzed. RESULTS In the CAD cohort, 45 glycerophospholipid and sphingolipid species were significantly lower compared to healthy controls. In the AMI group, 42 glycerophospholipid and sphingolipid species were reduced. Four PC plasmalogens (PC33:1, PC33:2, PC33:3 and PC35:3) showed the most significant difference. Out of eleven analyzed sphingoid bases, four were lower in the CAD and six in the AMI group. Sphingosine-1-phosphate (S1P) levels were reduced in the AMI group whereas an atypical C16:1 S1P was lower in both groups. Phosphatidylcholine and sphingomyelin species were exclusively present in lipoprotein particles, whereas lysophosphatidylcholines were mainly found in the lipoprotein-free fraction. The observed differences were not explained by the use of statins as confirmed in a second, independent cohort. CONCLUSIONS Reduced levels of four PC plasmalogens (PC33:1, PC33:2, PC33:3 and PC35:3) were identified as a putatively novel lipid signature for CAD and AMI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyse the formation of sphingosine 1-phosphate, which is a key lipid mediator regulating cell responses such as proliferation, survival and migration. Here we have investigated the effect of targeted inhibition of SK-1 on cell damage and elucidated the mechanisms involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-1 protease (S1P) has an essential function in the conversion of latent, membrane-bound transcription factors to their free, active form. In mammals, abundant expression of S1P in chondrocytes suggests an involvement in chondrocyte function. To determine the requirement of S1P in cartilage and bone development, we have created cartilage-specific S1P knockout mice (S1P(cko)). S1P(cko) mice exhibit chondrodysplasia and a complete lack of endochondral ossification even though Runx2 expression, Indian hedgehog signaling, and osteoblastogenesis is intact. However, there is a substantial increase in chondrocyte apoptosis in the cartilage of S1P(cko) mice. Extraction of type II collagen is substantially lower from S1P(cko) cartilage. In S1P(cko) mice, the collagen network is disorganized and collagen becomes entrapped in chondrocytes. Ultrastructural analysis reveals that the endoplasmic reticulum (ER) in S1P(cko) chondrocytes is engorged and fragmented in a manner characteristic of severe ER stress. These data suggest that S1P activity is necessary for a specialized ER stress response required by chondrocytes for the genesis of normal cartilage and thus endochondral ossification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1alpha and HIF-2alpha, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1alpha or HIF-2alpha by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-beta2 (TGF-beta2) stimulates the expression of pro-fibrotic connective tissue growth factor (CTGF) during the course of renal disease. Because sphingosine kinase-1 (SK-1) activity is also upregulated by TGF-beta, we studied its effect on CTGF expression and on the development of renal fibrosis. When TGF-beta2 was added to an immortalized human podocyte cell line we found that it activated the promoter of SK-1, resulting in upregulation of its mRNA and protein expression. Further, depletion of SK-1 by small interfering RNA or its pharmacological inhibition led to accelerated CTGF expression in the podocytes. Over-expression of SK-1 reduced CTGF induction, an effect mediated by intracellular sphingosine-1-phosphate. In vivo, SK-1 expression was also increased in the podocytes of kidney sections of patients with diabetic nephropathy when compared to normal sections of kidney obtained from patients with renal cancer. Similarly, in a mouse model of streptozotocin-induced diabetic nephropathy, SK-1 and CTGF were upregulated in podocytes. In SK-1 deficient mice, exacerbation of disease was detected by increased albuminuria and CTGF expression when compared to wild-type mice. Thus, SK-1 activity has a protective role in the fibrotic process and its deletion or inhibition aggravates fibrotic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naive T cells continuously recirculate between secondary lymphoid tissue via the blood and lymphatic systems, a process that maximizes the chances of an encounter between a T cell and its cognate antigen. This recirculation depends on signals from chemokine receptors, integrins, and the sphingosine-1-phosphate receptor. The authors of previous studies in other cell types have shown that Rac GTPases transduce signals leading to cell migration and adhesion; however, their roles in T cells are unknown. By using both 3-dimensional intravital and in vitro approaches, we show that Rac1- and Rac2-deficient T cells have multiple defects in this recirculation process. Rac-deficient T cells home very inefficiently to lymph nodes and the white pulp of the spleen, show reduced interstitial migration within lymph node parenchyma, and are defective in egress from lymph nodes. These mutant T cells show defective chemokine-induced chemotaxis, chemokinesis, and adhesion to integrin ligands. They have reduced lateral motility on endothelial cells and transmigrate in-efficiently. These multiple defects stem from critical roles for Rac1 and Rac2 in transducing chemokine and sphingosine-1-phosphate receptor 1 signals leading to motility and adhesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipids serve important functions as membrane constituents and also as energy storing molecules. Besides these functions certain lipid species have now been recognized as signalling molecules that regulate a multitude of cellular responses including cell growth and death, and also inflammatory reactions. Bioactive lipids are generated by hydrolysis from membrane lipids mainly by phospholipases giving rise to fatty acids and lysophospholipids that either directly exert their function or are further converted to active mediators. This review will summarize the present knowledge about bioactive lipids that either promote or attenuate inflammatory reactions. These lipids include polyunsaturated fatty acids (PUFA), eicosanoids including the epoxyeicosatrienoic acids (EET), peroxisome proliferation activating receptor (PPAR) activators, cannabinoids and the sphingolipids ceramide, sphingosine 1-phosphate and sphingosylphosphorylcholine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: Ceramide kinase (CerK) catalyzes the generation of the sphingolipid ceramide-1-phosphate (C1P) which regulates various cellular functions including cell growth and death, and inflammation. Here, we used a novel catalytic inhibitor of CerK, NVP-231, and CerK knockout cells to investigate the contribution of CerK to proliferation and inflammation in renal mesangial cells and fibroblasts. Methods: Cells were treated with NVP-231 and [3H]-thymidine incorporation into DNA, [3H]-arachidonic acid release, prostaglandin E2 (PGE2) synthesis, cell cycle distribution, and apoptosis were determined. Results: Treatment of rat mesangial cells and mouse renal fibroblasts with NVP-231 decreased DNA synthesis, but not of agonist-stimulated arachidonic acid release or PGE2 synthesis. Similarly, proliferation but not arachidonic acid release or PGE2 synthesis was reduced in CERK knockout renal fibroblasts. The anti-proliferative effect of NVP-231 on mesangial cells was due to M phase arrest as determined using the mitosis markers phospho-histone H3, cdc2 and polo-like kinase-1, and induction of apoptosis. Moreover, loss of CerK sensitized cells towards stress-induced apoptosis. Conclusions: Our data demonstrate that CerK induces proliferation but not PGE2 formation of renal mesangial cells and fibroblasts, and suggest that targeted CerK inhibition has potential for treating mesangioproliferative kidney diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ). PGC-1 enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1 levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1 -mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1 and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1 enhances lipogenesis in skeletal muscle through liver X receptor -dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1 and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1 coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.