70 resultados para spatially explicit individual-based model
Resumo:
Soil erosion on sloping agricultural land poses a serious problem for the environment, as well as for production. In areas with highly erodible soils, such as those in loess zones, application of soil and water conservation measures is crucial to sustain agricultural yields and to prevent or reduce land degradation. The present study, carried out in Faizabad, Tajikistan, was designed to evaluate the potential of local conservation measures on cropland using a spatial modelling approach to provide decision-making support for the planning of spatially explicit sustainable land use. A sampling design to support comparative analysis between well-conserved units and other field units was established in order to estimate factors that determine water erosion, according to the Revised Universal Soil Loss Equation (RUSLE). Such factor-based approaches allow ready application using a geographic information system (GIS) and facilitate straightforward scenario modelling in areas with limited data resources. The study showed first that assessment of erosion and conservation in an area with inhomogeneous vegetation cover requires the integration of plot-based cover. Plot-based vegetation cover can be effectively derived from high-resolution satellite imagery, providing a useful basis for plot-wise conservation planning. Furthermore, thorough field assessments showed that 25.7% of current total cropland is covered by conservation measures (terracing, agroforestry and perennial herbaceous fodder). Assessment of the effectiveness of these local measures, combined with the RUSLE calculations, revealed that current average soil loss could be reduced through low-cost measures such as contouring (by 11%), fodder plants (by 16%), and drainage ditches (by 53%). More expensive measures such as terracing and agroforestry can reduce erosion by as much as 63% (for agroforestry) and 93% (for agroforestry combined with terracing). Indeed, scenario runs for different levels of tolerable erosion rates showed that more cost-intensive and technologically advanced measures would lead to greater reduction of soil loss. However, given economic conditions in Tajikistan, it seems advisable to support the spread of low-cost and labourextensive measures.
Resumo:
Climate change is expected to profoundly influence the hydrosphere of mountain ecosystems. The focus of current process-based research is centered on the reaction of glaciers and runoff to climate change; spatially explicit impacts on soil moisture remain widely neglected. We spatio-temporally analyzed the impact of the climate on soil moisture in a mesoscale high mountain catchment to facilitate the development of mitigation and adaptation strategies at the level of vegetation patterns. Two regional climate models were downscaled using three different approaches (statistical downscaling, delta change, and direct use) to drive a hydrological model (WaSiM-ETH) for reference and scenario period (1960–1990 and 2070–2100), resulting in an ensemble forecast of six members. For all ensembles members we found large changes in temperature, resulting in decreasing snow and ice storage and earlier runoff, but only small changes in evapotranspiration. The occurrence of downscaled dry spells was found to fluctuate greatly, causing soil moisture depletion and drought stress potential to show high variability in both space and time. In general, the choice of the downscaling approach had a stronger influence on the results than the applied regional climate model. All of the results indicate that summer soil moisture decreases, which leads to more frequent declines below a critical soil moisture level and an advanced evapotranspiration deficit. Forests up to an elevation of 1800 m a.s.l. are likely to be threatened the most, while alpine areas and most pastures remain nearly unaffected. Nevertheless, the ensemble variability was found to be extremely high and should be interpreted as a bandwidth of possible future drought stress situations.
Resumo:
The rotational nature of shifting cultivation poses several challenges to its detection by remote sensing. Consequently, there is a lack of spatial data on the dynamics of shifting cultivation landscapes on a regional, i.e. sub-national, or national level. We present an approach based on a time series of Landsat and MODIS data and landscape metrics to delineate the dynamics of shifting cultivation landscapes. Our results reveal that shifting cultivation is a land use system still widely and dynamically utilized in northern Laos. While there is an overall reduction in the areas dominated by shifting cultivation, some regions also show an expansion. A review of relevant reports and articles indicates that policies tend to lead to a reduction while market forces can result in both expansion and reduction. For a better understanding of the different factors affecting shifting cultivation landscapes in Laos, further research should focus on spatially explicit analyses.
Resumo:
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.
Resumo:
In recent years, there has been a renewed interest in the ecological consequences of individual trait variation within populations. Given that individual variability arises from evolutionary dynamics, to fully understand eco-evolutionary feedback loops, we need to pay special attention to how standing trait variability affects ecological dynamics. There is mounting empirical evidence that intra-specific phenotypic variation can exceed species-level means, but theoretical models of multi-trophic species coexistence typically neglect individual-level trait variability. What is needed are multispecies datasets that are resolved at the individual level that can be used to discriminate among alternative models of resource selection and species coexistence in food webs. Here, using one the largest individual-based datasets of a food web compiled to date, along with an individual trait-based stochastic model that incorporates Approximate Bayesian computation methods, we document intra-population variation in the strength of prey selection by different classes or predator phenotypes which could potentially alter the diversity and coexistence patterns of food webs. In particular, we found that strongly connected individual predators preferentially consumed common prey, whereas weakly connected predators preferentially selected rare prey. Such patterns suggest that food web diversity may be governed by the distribution of predator connectivity and individual trait variation in prey selection. We discuss the consequences of intra-specific variation in prey selection to assess fitness differences among predator classes (or phenotypes) and track longer term food web patterns of coexistence accounting for several phenotypes within each prey and predator species.
Resumo:
Land degradation as well as land conservation maps at a (sub-) national scale are critical for pro-ject planning for sustainable land management. It has long been recognized that online accessible and low-cost raster data sets (e.g. Landsat imagery, SRTM-DEM’s) provide a readily available basis for land resource assessments for developing countries. However, choice of spatial, tempo-ral and spectral resolution of such data is often limited. Furthermore, while local expert knowl-edge on land degradation processes is abundant, difficulties are often encountered when linking existing knowledge with modern approaches including GIS and RS. The aim of this study was to develop an easily applicable, standardized workflow for preliminary spatial assessments of land degradation and conservation, which also allows the integration of existing expert knowledge. The core of the developed method consists of a workflow for rule-based land resource assess-ment. In a systematic way, this workflow leads from predefined land degradation and conserva-tion classes to field indicators, to suitable spatial proxy data, and finally to a set of rules for clas-sification of spatial datasets. Pre-conditions are used to narrow the area of interest. Decision tree models are used for integrating the different rules. It can be concluded that the workflow presented assists experts from different disciplines in col-laboration GIS/RS specialists in establishing a preliminary model for assessing land degradation and conservation in a spatially explicit manner. The workflow provides support when linking field indicators and spatial datasets, and when determining field indicators for groundtruthing.
Resumo:
The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
Resumo:
Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.
Resumo:
Partner notification (PN or contact tracing) is an important aspect of treating bacterial sexually transmitted infections (STIs), such as Chlamydia trachomatis. It facilitates the identification of new infected cases that can be treated through individual case management. PN also acts indirectly by limiting onward transmission in the general population. However, the impact of PN, both at the level of individuals and the population, remains unclear. Since it is difficult to study the effects of PN empirically, mathematical and computational models are useful tools for investigating its potential as a public health intervention. To this end, we developed an individual-based modeling framework called Rstisim. It allows the implementation of different models of STI transmission with various levels of complexity and the reconstruction of the complete dynamic sexual partnership network over any time period. A key feature of this framework is that we can trace an individual's partnership history in detail and investigate the outcome of different PN strategies for C. trachomatis. For individual case management, the results suggest that notifying three or more partners from the preceding 18 months yields substantial numbers of new cases. In contrast, the successful treatment of current partners is most important for preventing re-infection of index cases and reducing further transmission of C. trachomatis at the population level. The findings of this study demonstrate the difference between individual and population level outcomes of public health interventions for STIs.
Resumo:
Efficient planning of soil conservation measures requires, first, to understand the impact of soil erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon (SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of extensive ground truth, a digital elevation model and Landsat 7 imagery from two different seasons. Soil spectral reflectance readings were taken from soil samples in the laboratory and calibrated with results of SOC chemical analysis using regression tree modelling. The resulting model statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accuracy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which was developed to combine soil erosion incidence information and SOC content levels (for uniform land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, from well conserved land to hot spots of soil degradation. The approach helps to gain a better understanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spatially explicit manner. The results show distinctly lower SOC content levels on large parts of the test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On the other hand, there are strong indications that afforestations and fruit orchards established in the 1980s have been successful in conserving soil resources.
Resumo:
BACKGROUND: Published individual-based, dynamic sexual network modelling studies reach different conclusions about the population impact of screening for Chlamydia trachomatis. The objective of this study was to conduct a direct comparison of the effect of organised chlamydia screening in different models. METHODS: Three models simulating population-level sexual behaviour, chlamydia transmission, screening and partner notification were used. Parameters describing a hypothetical annual opportunistic screening program in 16-24 year olds were standardised, whereas other parameters from the three original studies were retained. Model predictions of the change in chlamydia prevalence were compared under a range of scenarios. RESULTS: Initial overall chlamydia prevalence rates were similar in women but not men and there were age and sex-specific differences between models. The number of screening tests carried out was comparable in all models but there were large differences in the predicted impact of screening. After 10 years of screening, the predicted reduction in chlamydia prevalence in women aged 16-44 years ranged from 4% to 85%. Screening men and women had a greater impact than screening women alone in all models. There were marked differences between models in assumptions about treatment seeking and sexual behaviour before the start of the screening intervention. CONCLUSIONS: Future models of chlamydia transmission should be fitted to both incidence and prevalence data. This meta-modelling study provides essential information for explaining differences between published studies and increasing the utility of individual-based chlamydia transmission models for policy making.
Resumo:
Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.
Resumo:
The design of efficient hydrological risk mitigation strategies and their subsequent implementation relies on a careful vulnerability analysis of the elements exposed. Recently, extensive research efforts were undertaken to develop and refine empirical relationships linking the structural vulnerability of buildings to the impact forces of the hazard processes. These empirical vulnerability functions allow estimating the expected direct losses as a result of the hazard scenario based on spatially explicit representation of the process patterns and the elements at risk classified into defined typological categories. However, due to the underlying empiricism of such vulnerability functions, the physics of the damage-generating mechanisms for a well-defined element at risk with its peculiar geometry and structural characteristics remain unveiled, and, as such, the applicability of the empirical approach for planning hazard-proof residential buildings is limited. Therefore, we propose a conceptual assessment scheme to close this gap. This assessment scheme encompasses distinct analytical steps: modelling (a) the process intensity, (b) the impact on the element at risk exposed and (c) the physical response of the building envelope. Furthermore, these results provide the input data for the subsequent damage evaluation and economic damage valuation. This dynamic assessment supports all relevant planning activities with respect to a minimisation of losses, and can be implemented in the operational risk assessment procedure.
Resumo:
Increasing commercial pressures on land are provoking fundamental and far-reaching changes in the relationships between people and land. Much knowledge on land-oriented investments projects currently comes from the media. Although this provides a good starting point, lack of transparency and rapidly changing contexts mean that this is often unreliable. The International Land Coalition, in partnership with Oxfam Novib, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), University of Pretoria, Centre for Development and Environment of the University of Bern (CDE), and GIZ, started to compile an inventory of land-related investments. This project aims to better understand the extent, trends and impacts of land-related investments by supporting an ongoing and systematic stocktaking exercise of the various investment projects currently taking place worldwide. It involves a large number of organizations and individuals working in areas where land transactions are being made, and able to provide details of such investments. The project monitors land transactions in rural areas that imply a transformation of land use rights from communities and smallholders to commercial use, and are made both by domestic and foreign investors (private actors, governments, government-back private investors). The focus is on investments for food or agrofuel production, timber extraction, carbon trading, mineral extraction, conservation and tourism. A novel way of using ITC to document land acquisitions in a spatially explicit way and by using an approach called “crowdsourcing” is being developed. This approach will allow actors to share information and knowledge directly and at any time on a public platform, where it will be scrutinized in terms of reliability and cross checked with other sources. Up to now, over 1200 deals have been recorded across 96 countries. Details of such transactions have been classified in a matrix and distributed to over 350 contacts worldwide for verification. The verified information has been geo-referenced and represented in two global maps. This is an open database enabling a continued monitoring exercise and the improvement of data accuracy. More information will be released over time. The opportunities arise from overcoming constraints by incomplete information by proposing a new way of collecting, enhancing and sharing information and knowledge in a more democratic and transparent manner. The intention is to develop interactive knowledge platform where any interested person can share and access information on land deals, their link to involved stakeholders, and their embedding into a geographical context. By making use of new ICT technologies that are more and more in the reach of local stakeholders, as well as open access and web-based spatial information systems, it will become possible to create a dynamic database containing spatial explicit data. Feeding in data by a large number of stakeholders, increasingly also by means of new mobile ITC technologies, will open up new opportunities to analyse, monitor and assess highly dynamic trends of land acquisition and rural transformation.
Resumo:
This chapter aims to overcome the gap existing between case study research, which typically provides qualitative and process-based insights, and national or global inventories that typically offer spatially explicit and quantitative analysis of broader patterns, and thus to present adequate evidence for policymaking regarding large-scale land acquisitions. Therefore, the chapter links spatial patterns of land acquisitions to underlying implementation processes of land allocation. Methodologically linking the described patterns and processes proved difficult, but we have identified indicators that could be added to inventories and monitoring systems to make linkage possible. Combining complementary approaches in this way may help to determine where policy space exists for more sustainable governance of land acquisitions, both geographically and with regard to processes of agrarian transitions. Our spatial analysis revealed two general patterns: (i) relatively large forestry-related acquisitions that target forested landscapes and often interfere with semi-subsistence farming systems; and (ii) smaller agriculture-related acquisitions that often target existing cropland and also interfere with semi-subsistence systems. Furthermore, our meta-analysis of land acquisition implementation processes shows that authoritarian, top-down processes dominate. Initially, the demands of powerful regional and domestic investors tend to override socio-ecological variables, local actors’ interests, and land governance mechanisms. As available land grows scarce, however, and local actors gain experience dealing with land acquisitions, it appears that land investments begin to fail or give way to more inclusive, bottom-up investment models.