46 resultados para sorbifolin 6 o beta glucopyranoside
Resumo:
BACKGROUND ; AIMS: Integrin alphavbeta6 is highly expressed on certain activated epithelia, where it mediates attachment to fibronectin and serves as coreceptor for the activation of latent transforming growth factor (TGF)-beta1. Because its role in liver fibrosis is unknown, we studied alphavbeta6 function in vitro and explored the antifibrotic potential of the specific alphavbeta6 antagonist EMD527040. METHODS: Experimental liver fibrosis was studied in rats after bile duct ligation (BDL) and in Mdr2(abcb4)(-/-) mice. Different doses of EMD527040 were given to rats from week 2 to 6 after BDL and to Mdr2(-/-) mice from week 4 to 8. Liver collagen was quantified, and expression of alphavbeta6 and fibrosis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. alphavbeta6-expressing cells, bile duct proliferation, and apoptosis were assessed histologically. The effect of EMD527040 on cholangiocyte adhesion, proliferation, apoptosis, and TGF-beta1 activation was studied in vitro. RESULTS: alphavbeta6 was highly expressed on proliferating bile duct epithelia in fibrosis, with 100-fold increased transcript levels in advanced fibrosis. EMD527040 attenuated bile ductular proliferation and peribiliary collagen deposition by 40%-50%, induced down-regulation of fibrogenic and up-regulation of fibrolytic genes, and improved liver architecture and function. In vitro alphavbeta6 inhibition reduced activated cholangiocyte proliferation, their adhesion to fibronectin, and endogenous activation of TGF-beta1 by 50% but did not affect bile duct apoptosis. CONCLUSIONS: Integrin alphavbeta6 is strongly up-regulated in proliferating bile duct epithelia and drives fibrogenesis via adhesion to fibronectin and auto/paracrine TGF-beta1 activation. Pharmacologic inhibition of alphavbeta6 potently inhibits the progression of primary and secondary biliary fibrosis.
Resumo:
Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.
Resumo:
The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.
Resumo:
Decreased heart rate variability (HRV) has been associated with an increased risk of atherosclerosis. We hypothesized that a decrease in frequency domains of resting HRV would be associated with elevated plasma levels of interleukin (IL)-6 and soluble tissue factor (sTF) both previously shown to prospectively predict atherothrombotic events in healthy subjects. Subjects were 102 healthy and unmedicated black and white middle-aged men and women. We determined IL-6 and sTF antigen in plasma and HRV measures from surface electrocardiogram data using spectral analysis. All statistical analyses controlled for age, gender, ethnicity, smoking status, blood pressure, and body mass index. Low amounts of low frequency (LF) power (beta=-0.31, p=0.007) and high frequency (HF) power (beta=-0.36, p=0.002) were associated with increased amounts of IL-6, explaining 7% and 9% of the variance, respectively. Interactions between LF power and IL-6 (p=0.002) and between HF power and IL-6 (p=0.012) explained 8% and 5%, respectively, of the variance in sTF. Post hoc analyses showed associations between IL-6 and sTF when LF power (beta=0.51, p<0.001) and HF power (beta=0.48, p<0.001) were low but not when LF power and high HF power were high. The findings suggest that systemic low-grade inflammatory activity is associated with a decrease in HRV. Furthermore, there was a positive relationship between plasma levels of IL-6 and sTF antigen when HRV was low. Inflammation and related hypercoagulability might particularly contribute to atherothrombotic events in a setting of decreased HRV.
Resumo:
Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.
Resumo:
Although neuronal nitric oxide synthase (nNOS) plays a substantial role in skeletal muscle physiology, nNOS-knockout mice manifest an only mild phenotypic malfunction in this tissue. To identify proteins that might be involved in adaptive responses in skeletal muscle of knockout mice lacking nNOS, 2D-PAGE with silver-staining and subsequent tandem mass spectrometry (LC-MS/MS) was performed using extracts of extensor digitorum longus muscle (EDL) derived from nNOS-knockout mice in comparison to C57Bl/6 control mice. Six proteins were significantly (P < or = 0.05) more highly expressed in EDL of nNOS-knockout mice than in that of C57 control mice, all of which are involved in the metabolism of reactive oxygen species (ROS). These included prohibitin (2.0-fold increase), peroxiredoxin-3 (1.9-fold increase), Cu(2+)/Zn(2+)-dependent superoxide dismutase (SOD; 1.9-fold increase), heat shock protein beta-1 (HSP25; 1.7-fold increase) and nucleoside diphosphate kinase B (2.6-fold increase). A significantly higher expression (4.1-fold increase) and a pI shift from 6.5 to 5.9 of peroxiredoxin-6 in the EDL of nNOS-knockout mice were confirmed by quantitative immunoblotting. The concentrations of the mRNA encoding five of these proteins (the exception being prohibitin) were likewise significantly (P < or = 0.05) higher in the EDL of nNOS-knockout mice. A higher intrinsic hydrogen peroxidase activity (P < or = 0.05) was demonstrated in EDL of nNOS-knockout mice than C57 control mice, which was related to the presence of peroxiredoxin-6. The treatment of mice with the chemical NOS inhibitor L-NAME for 3 days induced a significant 3.4-fold up-regulation of peroxiredoxin-6 in the EDL of C57 control mice (P < or = 0.05), but did not alter its expression in EDL of nNOS-knockout mice. ESR spectrometry demonstrated the levels of superoxide to be 2.5-times higher (P < or = 0.05) in EDL of nNOS-knockout mice than in C57 control mice while an in vitro assay based on the emission of 2,7-dichlorofluorescein fluorescence disclosed the concentration of ROS to be similar in both strains of mice. We suggest that the up-regulation of proteins that are implicated in the metabolism of ROS, particularly of peroxiredoxin-6, within skeletal muscles of nNOS-knockout mice functionally compensates for the absence of nNOS in scavenging of superoxide.
Resumo:
The reliable quantification of gene copy number variations is a precondition for future investigations regarding their functional relevance. To date, there is no generally accepted gold standard method for copy number quantification, and methods in current use have given inconsistent results in selected cohorts. In this study, we compare two methods for copy number quantification. beta-defensin gene copy numbers were determined in parallel in 80 genomic DNA samples by real-time PCR and multiplex ligation-dependent probe amplification (MLPA). The pyrosequencing-based paralog ratio test (PPRT) was used as a standard of comparison in 79 out of 80 samples. Realtime PCR and MPLA results confirmed concordant DEFB4, DEFB103A, and DEFB104A copy numbers within samples. These two methods showed identical results in 32 out of 80 samples; 29 of these 32 samples comprised four or fewer copies. The coefficient of variation of MLPA is lower compared with PCR. In addition, the consistency between MLPA and PPRT is higher than either PCR/MLPA or PCR/PPRT consistency. In summary, these results suggest that MLPA is superior to real-time PCR in beta-defensin copy number quantification.
Resumo:
PURPOSE: To evaluate the consecutive treatment results regarding pterygium recurrence and the efficacy of exclusive strontium-/yttrium-90 beta-irradiation for primary and recurrent pterygia and to analyze the functional outcome. PATIENTS AND METHODS: Between October 1974 and December 2005, 58 primary and 21 recurrent pterygia were exclusively treated with strontium-/yttrium-90 beta-irradiation with doses ranging from 3,600 to 5,500 cGy. The follow-up time was 46.6 +/- 26.7 months, with a median of 46.5 months. RESULTS: The treatment led to a size reduction in all pterygia (p < 0.0001). Neither recurrences nor side effects were observed during therapy and follow-up in this study. Best-corrected visual acuity increased (p = 0.0064). Corneal astigmatism was reduced in recurrent pterygia (p = 0.009). CONCLUSION: Exclusive strontium-/yttrium-90 beta-irradiation of pterygia is a very efficient and well-tolerated treatment, with remarkable aesthetic and rehabilitative results in comparison to conventional treatments, especially for recurrent lesions which have undergone prior surgical excision.
Resumo:
BACKGROUND: Marfan syndrome (MFS) is caused by mutations in the fibrillin-1 gene and dysregulation of transforming growth factor-beta (TGF-beta). Recent evidence suggests that losartan, an angiotensin II type 1 blocker that blunts TGF-beta activation, may be an effective treatment for MFS. We hypothesized that dysregulation of TGF-beta might be mirrored in circulating TGF-beta concentrations. METHODS AND RESULTS: Serum obtained from MFS mutant mice (Fbn1(C1039G/+)) treated with losartan was analyzed for circulating TGF-beta1 concentrations and compared with those from placebo-treated and wild-type mice. Aortic root size was measured by echocardiography. Data were validated in patients with MFS and healthy individuals. In mice, circulating total TGF-beta1 concentrations increased with age and were elevated in older untreated Fbn1(C1039G/+) mice compared with wild-type mice (P=0.01; n=16; mean+/-SEM, 115+/-8 ng/mL versus n=17; mean+/-SEM, 92+/-4 ng/mL). Losartan-treated Fbn1(C1039G/+) mice had lower total TGF-beta1 concentrations compared with age-matched Fbn1(C1039G/+) mice treated with placebo (P=0.01; n=18; 90+/-5 ng/mL), and circulating total TGF-beta1 levels were indistinguishable from those of age-matched wild-type mice (P=0.8). Correlation was observed between circulating TGF-beta1 levels and aortic root diameters in Fbn1(C1039G/+) and wild-type mice (P=0.002). In humans, circulating total TGF-beta1 concentrations were elevated in patients with MFS compared with control individuals (P<0.0001; n=53; 15+/-1.7 ng/mL versus n=74; 2.5+/-0.4 ng/mL). MFS patients treated with losartan (n=55) or beta-blocker (n=80) showed significantly lower total TGF-beta1 concentrations compared with untreated MFS patients (P< or =0.05). CONCLUSIONS: Circulating TGF-beta1 concentrations are elevated in MFS and decrease after administration of losartan, beta-blocker therapy, or both and therefore might serve as a prognostic and therapeutic marker in MFS.
Resumo:
OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.
Resumo:
Clostridium perfringens type C-induced enteritis necroticans is a rare but often fatal disease in humans. A consistent histopathological finding is an acute, deep necrosis of the small intestinal mucosa associated with acute vascular necrosis and massive haemorrhage in the lamina propria and submucosa. Retrospective immunohistochemical investigations of tissues from a diabetic adult who died of enteritis necroticans revealed endothelial localization of C. perfringens beta-toxin in small intestinal lesions. Our results indicate that vascular necrosis might be induced by a direct interaction between C. perfringens beta-toxin and endothelial cells and that targeted disruption of endothelial cells plays a role in the pathogenesis of enteritis necroticans.
Resumo:
BACKGROUND Approximately 10% of sudden infant death syndrome (SIDS) cases may stem from potentially lethal cardiac channelopathies, with approximately half of channelopathic SIDS involving the Na(V)1.5 cardiac sodium channel. Recently, Na(V) beta subunits have been implicated in various cardiac arrhythmias. Thus, the 4 genes encoding Na(V) beta subunits represent plausible candidate genes for SIDS. OBJECTIVE This study sought to determine the spectrum, prevalence, and functional consequences of sodium channel beta-subunit mutations in a SIDS cohort. METHODS In this institutional review board-approved study, mutational analysis of the 4 beta-subunit genes, SCN1B to 4B, was performed using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing of DNA derived from 292 SIDS cases. Engineered mutations were coexpressed with SCN5A in HEK 293 cells and were whole-cell patch clamped. One of the putative SIDS-associated mutations was similarly studied in adenovirally transduced adult rat ventricular myocytes. RESULTS Three rare (absent in 200 to 800 reference alleles) missense mutations (beta3-V36M, beta3-V54G, and beta4-S206L) were identified in 3 of 292 SIDS cases. Compared with SCN5A+beta3-WT, beta3-V36M significantly decreased peak I(Na) and increased late I(Na), whereas beta3-V54G resulted in a marked loss of function. beta4-S206L accentuated late I(Na) and positively shifted the midpoint of inactivation compared with SCN5A+beta4-WT. In native cardiomyocytes, beta4-S206L accentuated late I(Na) and increased the ventricular action potential duration compared with beta4-WT. CONCLUSION This study provides the first molecular and functional evidence to implicate the Na(V) beta subunits in SIDS pathogenesis. Altered Na(V)1.5 sodium channel function due to beta-subunit mutations may account for the molecular pathogenic mechanism underlying approximately 1% of SIDS cases.
Resumo:
This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.
Resumo:
INTRODUCTION We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits. METHODS Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test. RESULTS Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (-5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (-23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16). CONCLUSIONS Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.
Resumo:
INTRODUCTION Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. METHODS Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). RESULTS Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. CONCLUSIONS Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.