43 resultados para soil moisture sensor interface


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enrichment of 13C in SOM with soil depth is related to interacting processes influenced by temperature and precipitation. Our objectives were to derive climate effects on patterns of vertical δ13C values of soil organic matter (SOM) while minimizing the effect of confounding variables. We investigated vertical changes in δ13C values of SOM in 1-cm depth intervals in silvicultural mature beech (Fagus sylvatica L.) forest ecosystems in northern Rhineland-Palatinate across gradients of MAT (7.9 to 9.7 °C mean annual temperature) and MAP (607 to 1085 mm mean annual precipitation) in winter 2011. Forest stands (n = 10) were chosen based on data sets provided by the Rhineland-Palatinate Forest Administration so that variations in these gradients occurred while other environmental factors like physico-chemical soil properties, tree species, stand age, exposition and precipitation (for the temperature gradient) or temperature (for the precipitation gradient) did not differ among study sites. From litter down to the mineral soil at 10 cm depth, soil organic carbon (SOC) content decreased (47.5 ± SE 0.1% to 2.5 ± 0.1%) while the δ13C values increased (− 29.4 ± 0.1‰ to − 26.1 ± 0.1‰). Litter of sites under higher MAP/lower MAT had lower δ13C values which was in line with literature data on climate driven plant physiological process. To compare the dimension of the vertical 13C enrichment, δ13C values were regressed linearly against log-transformed carbon contents yielding absolute values of these slopes (beta). Beta values ranged between 0.6 and 4.5 (range of r from − 0.7 to − 1.0; p < 0.01). Due to an assumed decay continuum and similar variations of δ13C values in litter and in 10 cm depth, we conclude that effects on isotope composition in the Oi layer continue vertically and therefore, δ13C values in litter do not solely control beta values. Beta values decreased with increasing MAT (r = − 0.83; p < 0.05). Reduced soil moisture and therefore both, reduced microbial activity and reduced downward transport of microbial cycled DOM (=13C enriched) might be responsible for less pronounced δ13C depth profiles in case of high temperatures. Greater C:N ratios (lower degradability) of the litter under higher temperatures likely contributed to these depth trends. Beta values increased with increasing MAP (r = 0.73; p < 0.05). We found decreasing C:N ratios in the mineral soil that possibly indicates higher decomposition under higher precipitation. Exclusion of the organic layers from linear regressions indicated a stronger impact of MAP on the development of δ13C depth profiles. Our results confirm temperature and precipitation effects on δ13C depth profiles and indicate stronger 13C enrichment under lower MAT/higher MAP. Therefore, time series of vertical δ13C depth profiles might provide insights into climate change effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensuring sustainable use of natural resources is crucial for maintaining the basis for our livelihoods. With threats from climate change, disputes over water, biodiversity loss, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) practices will only increase in the future. For years already, various national and international organizations (GOs, NGOs, donors, research institutes, etc.) have been working on alternative forms of land management. And numerous land users worldwide – especially small farmers – have been testing, adapting, and refining new and better ways of managing land. All too often, however, the resulting SLM knowledge has not been sufficiently evaluated, documented and shared. Among other things, this has often prevented valuable SLM knowledge from being channelled into evidence-based decision-making processes. Indeed, proper knowledge management is crucial for SLM to reach its full potential. Since more than 20 years, the international WOCAT network documents and promotes SLM through its global platform. As a whole, the WOCAT methodology comprises tools for documenting, evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing, analysis and use for decision support in the field, at the planning level, and in scaling up identified good practices. In early 2014, WOCAT’s growth and ongoing improvement culminated in its being officially recognized by the UNCCD as the primary recommended database for SLM best practices. Over the years, the WOCAT network confirmed that SLM helps to prevent desertification, to increase biodiversity, enhance food security and to make people less vulnerable to the effects of climate variability and change. In addi- tion, it plays an important role in mitigating climate change through improving soil organic matter and increasing vegetation cover. In-depth assessments of SLM practices from desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats. The impacts mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Among others, favourable local-scale cost-benefit relationships of SLM practices play a crucial role in their adoption. An economic analysis from the WOCAT database showed that land users perceive a large majority of the technologies as having benefits that outweigh costs in the long term. The high investment costs associated with some practices may constitute a barrier to adoption, however, where appropriate, short-term support for land users can help to promote these practices. The increased global concerns on climate change, disaster risks and food security redirect attention to, and trigger more funds for SLM. To provide the necessary evidence-based rationale for investing in SLM and to reinforce expert and land users assessments of SLM impacts, more field research using inter- and transdisciplinary approaches is needed. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the EU FP7 projects CASCADE and RECARE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Our aims were to compare the composition of testate amoeba (TA) communities from Santa Cruz Island, Galápagos Archipelago, which are likely in existence only as a result of anthropogenic habitat transformation, with similar naturally occurring communities from northern and southern continental peatlands. Additionally, we aimed at assessing the importance of niche-based and dispersal-based processes in determining community composition and taxonomic and functional diversity. Location The humid highlands of the central island of Santa Cruz, Galápagos Archipelago. Methods We survey the alpha, beta and gamma taxonomic and functional diversities of TA, and the changes in functional traits along a gradient of wet to dry habitats. We compare the TA community composition, abundance and frequency recorded in the insular peatlands with that recorded in continental peatlands of Northern and Southern Hemispheres. We use generalized linear models to determine how environmental conditions influence taxonomic and functional diversity as well as the mean values of functional traits within communities. We finally apply variance partitioning to assess the relative importance of niche- and dispersal-based processes in determining community composition. Results TA communities in Santa Cruz Island were different from their Northern Hemisphere and South American counterparts with most genera considered as characteristic for Northern Hemisphere and South American Sphagnum peatlands missing or very rare in the Galápagos. Functional traits were most correlated with elevation and site topography and alpha functional diversity to the type of material sampled and site topography. Community composition was more strongly correlated with spatial variables than with environmental ones. Main conclusions TA communities of the Sphagnum peatlands of Santa Cruz Island and the mechanisms shaping these communities contrast with Northern Hemisphere and South American peatlands. Soil moisture was not a strong predictor of community composition most likely because rainfall and clouds provide sufficient moisture. Dispersal limitation was more important than environmental filtering because of the isolation of the insular peatlands from continental ones and the young ecological history of these ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions Do extreme dry spells in late summer or in spring affect abundance and species composition of the reproductive shoots and the seed rain in the next annual crop? Are drought effects on reproductive shoots related to the rooting depths of species? Location Species-rich semi-natural grassland at Negrentino, Switzerland. Methods In plots under automated rain-out shelters, rainwater was added to simulate normal conditions and compare them with two experimentally effected long dry spells, in late summer (2004) and in the following spring (2005). For 28 plots, numbers of reproductive shoots per species were counted in 1-m2 areas and seed rain was estimated using nine sticky traps of 102 cm2 after dry spells. Results The two extreme dry spells in late summer and spring were similar in length and their probability of recurrence. They independently reduced the subsequent reproductive output of the community, while their seasonal timing modified its species composition. Compared to drought in spring, drought in late summer reduced soil moisture more and reduced the number of reproductive shoots of more species. The negative effects of summer drought decreased with species’ rooting depth. The shallow-rooted graminoids showed a consistent susceptibility to summer drought, while legumes and other forbs showed more varied responses to both droughts. Spring drought strongly reduced density (–53%) and species richness (–43%) of the community seed rain, while summer drought had only a marginally significant impact on seed density of graminoids (–44%). Reductions in seed number per shoot vs reproductive shoot density distinguished the impacts of drought with respect to its seasonal timing. Conclusion The essentially negative impact of drought in different seasons on reproductive output suggests that more frequent dry spells could contribute to local plant diversity loss by aggravating seed deficiency in species-rich grassland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1Recent studies demonstrated the sensitivity of northern forest ecosystems to changes in the amount and duration of snow cover at annual to decadal time scales. However, the consequences of snowfall variability remain uncertain for ecological variables operating at longer time scales, especially the distributions of forest communities. 2The Great Lakes region of North America offers a unique setting to examine the long-term effects of variable snowfall on forest communities. Lake-effect snow produces a three-fold gradient in annual snowfall over tens of kilometres, and dramatic edaphic variations occur among landform types resulting from Quaternary glaciations. We tested the hypothesis that these factors interact to control the distributions of mesic (dominated by Acer saccharum, Tsuga canadensis and Fagus grandifolia) and xeric forests (dominated by Pinus and Quercus spp.) in northern Lower Michigan. 3We compiled pre-European-settlement vegetation data and overlaid these data with records of climate, water balance and soil, onto Landtype Association polygons in a geographical information system. We then used multivariate adaptive regression splines to model the abundance of mesic vegetation in relation to environmental controls. 4Snowfall is the most predictive among five variables retained by our model, and it affects model performance 29% more than soil texture, the second most important variable. The abundance of mesic trees is high on fine-textured soils regardless of snowfall, but it increases with snowfall on coarse-textured substrates. Lake-effect snowfall also determines the species composition within mesic forests. The weighted importance of A. saccharum is significantly greater than of T. canadensis or F. grandifolia within the lake-effect snowbelt, whereas T. canadensis is more plentiful outside the snowbelt. These patterns are probably driven by the influence of snowfall on soil moisture, nutrient availability and fire return intervals. 5Our results imply that a key factor dictating the spatio-temporal patterns of forest communities in the vast region around the Great Lakes is how the lake-effect snowfall regime responds to global change. Snowfall reductions will probably cause a major decrease in the abundance of ecologically and economically important species, such as A. saccharum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested whether OPAHs were formed during 19-wk incubation of a fertile soil at optimum moisture in the dark. The soil had initial mean (±s.e., n = 3) concentrations of 22 ± 1.7 (Σ28PAHs) and 4.2 ± 0.34 μg g−1 (Σ14OPAHs). After 19 wk, individual PAH and OPAH concentrations had decreased by up to 14 and 37%, respectively. Decreases in % of initial concentrations were positively correlated with their KOW values for PAHs (r = 0.48, p = 0.022) and 9 OPAHs (r = 0.78, p = 0.013) but negatively, albeit not significantly, for 5 OPAHs (r = −0.75, p = 0.145) suggesting net formation of some OPAHs. The latter was supported by significantly increasing 1-indanone/fluorene ratios while the other OPAH to parent-PAH ratios remained constant or tended to increase. We conclude that OPAHs are formed in soils during microbial turnover of PAHs in a short time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the analysis of the lunar rocks and soil samples, brought to Earth by the Apollo missions, it is believed that the Moon has a waterless nature and also other volatile species are strongly depleted. Advancement in analysis techniques helped to identify water and other volatile species in lunar volcanic glasses. Additionally, recent lunar space missions detected water and volatile organic compounds in the region of the lunar poles where permanently shadowed craters are existing. All known lunar soil samples available on Earth come from the lunar near side, close to the equator. To verify the most recent measurement results and to enhance the knowledge of the geological history of the Moon it is of high interest to perform in situ measurements on the lunar poles. For this reason the Russian space agency, Roskosmos, developed aprogram for the scientific exploration of the lunar poles. The Gas Analysis Package (GAP) is part of the selected scientific payload aboard the Luna-Resurs Lander. This instrument uses pyrolytic cells and will apply laser spectroscopy, gas chromatography and mass spectrometry to detect and analyze volatile components trapped in the lunar soil. An existing ion optical design of a compact reflectron type time-of-flight mass spectrometer, originally built for the MEAP/P-BACE balloon mission, was chosen as a part of the GAP instrument. The scope of this thesis is the development of the interface between gas chromatography (GC) and this Neutral Gas Mass Spectrometer (NGMS) to perform coupled GC-MS measurements. In the first part of this thesis the interfacing concept was developed and verified by coupling the NGMS prototype to gas chromatography. The second part of this thesis is devoted to the development of the NGMS flight version.