63 resultados para refine administration
Resumo:
The clinical use of the alkylating oxazaphosphorine ifosfamide is hampered by a potentially severe encephalopathy. S-carboxymethylcysteine (SCMC), a metabolite of ifosfamide (IF), activates the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor, causes neuronal acidification, and could thus be responsible for the encephalopathy. Since the presence of SCMC in brain has not been documented following administration of IF, SCMC was measured in the brain of mice following both the individual i.p. administration of IF and SCMC. SCMC was found in a concentration of 108.2 +/- 29.7 nmol/g following IF, but was detectable at much lower levels following the administration of SCMC (21.1 +/- 21.2 nmol/g). Together with the observation that the concentration of SCMC was 10-fold higher in liver than in brain 1h after administration of SCMC, these findings suggest that the SCMC found after IF was formed in the brain in situ. The concentration of glutamic acid was similar in IF and SCMC treated animals. Methylene blue, which is used clinically to treat and to prevent IF encephalopathy, did not decrease the formation of SCMC in brain. By inhibiting monoamine oxidase activity it did, however, markedly increase the concentration of serotonin in brain which could modulate the effects of SCMC on AMPA/kainate receptors. Thus, SCMC is present in brain following the administration of IF and could contribute to the IF-associated encephalopathy by activation of AMPA/kainate receptors.
Resumo:
BACKGROUND: Delayed uterine involution has negative effects on the fertility of cows; use of prostaglandin F2alpha alone as a single treatment has not been shown to consistently improve fertility. Combined administration of PGF2alpha and PGE2 increased uterine pressure in healthy cows. We hypothesized, that the combination of both prostaglandins would accelerate uterine involution and have, therefore, a positive effect on fertility variables. In commercial dairy farming, the benefit of a single post partum combined prostaglandin treatment should be demonstrated. METHODS: 383 cows from commercial dairy farms were included in this study. Uterine size and secretion were evaluated at treatment 21-35 days post partum and 14 days later. Cows were randomly allocated to one of three treatment groups: PGF2alpha and PGE2, PGF2alpha or placebo. For every animal participating in the study, the following reproduction variables were recorded: Interval from calving to first insemination, days open, number of artificial inseminations (AI) to conception; subsequent treatment of uterus, subsequent treatment of ovaries. Plasma progesterone level at time of treatment was used as a covariable. For continuous measurements, analysis of variance was performed. Fisher's exact test for categorical non-ordered data and exact Kruskal-Wallis test for ordered data were used; pairwise group comparisons with Bonferroni adjustment of significance level were performed. RESULTS: There was no significant difference among treatment groups in uterine size. Furthermore, there was no significant difference among treatments concerning days open, number of AI, and subsequent treatment of uterus and ovaries. Days from calving to first insemination tended to be shorter for cows with low progesterone level given PGF2alpha and PGE2 in combination than for the placebo-group (P = 0.024). CONCLUSION: The results of this study indicate that the administration of PGF2alpha or a combination of PGF2alpha and PGE2 21 to 35 days post partum had no beneficial effect upon measured fertility variables. The exception was a tendency for a shorter interval from calving to first insemination after administration of the combination of PGF2alpha and PGE2, as compared to the placebo group. Further research should be done in herds with reduced fertility and/or an increased incidence of postpartum vaginal discharge.
Resumo:
OBJECTIVE: To investigate effects of isoflurane at approximately the minimum alveolar concentration (MAC) on the nociceptive withdrawal reflex (NWR) of the forelimb of ponies as a method for quantifying anesthetic potency. ANIMALS: 7 healthy adult Shetland ponies. PROCEDURE: Individual MAC (iMAC) for isoflurane was determined for each pony. Then, effects of isoflurane administered at 0.85, 0.95, and 1.05 iMAC on the NWR were assessed. At each concentration, the NWR threshold was defined electromyographically for the common digital extensor and deltoid muscles by stimulating the digital nerve; additional electrical stimulations (3, 5, 10, 20, 30, and 40 mA) were delivered, and the evoked activity was recorded and analyzed. After the end of anesthesia, the NWR threshold was assessed in standing ponies. RESULTS: Mean +/- SD MAC of isoflurane was 1.0 +/- 0.2%. The NWR thresholds for both muscles increased significantly in a concentration-dependent manner during anesthesia, whereas they decreased in awake ponies. Significantly higher thresholds were found for the deltoid muscle, compared with thresholds for the common digital extensor muscle, in anesthetized ponies. At each iMAC tested, amplitudes of the reflex responses from both muscles increased as stimulus intensities increased from 3 to 40 mA. A concentration-dependent depression of evoked reflexes with reduction in slopes of the stimulus-response functions was detected. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthetic-induced changes in sensory-motor processing in ponies anesthetized with isoflurane at concentrations of approximately 1.0 MAC can be detected by assessment of NWR. This method will permit comparison of effects of inhaled anesthetics or anesthetic combinations on spinal processing in equids.
Resumo:
BACKGROUND: Lung retrieval from non-heart-beating donors (NHBD) has been introduced into clinical practice successfully. However, because of potentially deleterious effects of warm ischemia on microvascular integrity, use of NHBD lungs is limited by short tolerable time periods before preservation. Recently, improvement of NHBD graft function was demonstrated by donor pre-treatment using aerosolized Ventavis (Schering Inc., Berlin, Germany). Currently, there is no information whether additional application of this approach in reperfusion can further optimize immediate graft function. MATERIAL AND METHODS: Asystolic pigs (n = 5/group) were ventilated for 180-min of warm ischemia (groups 1-3). In groups 2 and 3, 100 microg Ventavis were aerosolized over 30-min using an ultrasonic nebulizer (Optineb). Lungs were then retrogradely preserved with Perfadex and stored for 3-h. After left lung transplantation and contralateral lung exclusion, grafts were reperfused for 6-h. Only in group 3, another dose of 100 microg Ventavis was aerosolized during the first 30-min of reperfusion. Hemodynamics, pO2/FiO2 and dynamic compliance were monitored continuously and compared to controls. Intraalveolar edema was quantified stereologically, and extravascular-lung-water-index (EVLWI) was measured. Statistics comprised ANOVA analysis with repeated measurements. RESULTS: Dynamic compliance was significantly lower in both Ventavis groups, but additional administration did not result in further improvement. Oxygenation, pulmonary hemodynamics, EVLWI and intraalveolar edema formation were comparable between groups. CONCLUSIONS: Alveolar deposition of Ventavis in NHBD lungs before preservation significantly improves dynamic lung compliance and represents an important strategy for improvement of preservation quality and expansion of warm ischemic intervals. However, additional application of this method in early reperfusion is of no benefit.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Resumo:
Objective-To evaluate local tissue compatibility of doxycycline hyclate (DOX) in antebrachiocarpal joints of calves. Animals-10 healthy calves between 80 and 110 kg. Procedures-Calves were assigned to 2 treatment groups. Calves in groups DOX(low) and DOX(high) were administered 5 and 10 mg of DOX, respectively, locally in 1 antebrachiocarpal joint. The contralateral joint served as a control joint and was injected with 0.9% NaCl solution. General and local clinical findings were scored. Several variables were assessed in blood and synovial fluid for 9 days. Calves were euthanatized and pathologic changes and drug residues evaluated. Results-Throughout the study, none of the calves had clinical changes or abnormal hematologic values. Significant differences between treatment and control joints were evident only for matrix metalloproteinases at 0.5 hours after injection, with less activity for the DOX-treated joints in both treatment groups. Values for all synovial fluid variables, except nitric oxide, increased significantly during the first 12 to 72 hours after arthrocentesis in control and DOX-treated joints. Histologic examination revealed minimal infiltration of inflammatory cells independent of the treatment. No drug residues were detected 9 days after arthrocentesis in any tissues obtained from the liver, kidneys, fat, and skeletal muscles. Conclusions and Clinical Relevance-DOX had excellent intra-articular compatibility in healthy calves. Arthrocentesis induced a mild transient increase of inflammatory mediators in the synovial fluid. Significant decreases in matrix metalloproteinase activity in DOX-treated joints may indicate a potential chondroprotective effect of DOX.
Resumo:
The pharmacokinetics of ketamine and norketamine enantiomers after administration of intravenous (IV) racemic ketamine (R-/S-ketamine; 2.2mg/kg) or S-ketamine (1.1mg/kg) to five ponies sedated with IV xylazine (1.1mg/kg) were compared. The time intervals to assume sternal and standing positions were recorded. Arterial blood samples were collected before and 1, 2, 4, 6, 8 and 13min after ketamine administration. Arterial blood gases were evaluated 5min after ketamine injection. Plasma concentrations of ketamine and norketamine enantiomers were determined by capillary electrophoresis and were evaluated by non-linear least square regression analysis applying a monocompartmental model. The first-order elimination rate constant was significantly higher and elimination half-life and mean residence time were lower for S-ketamine after S-ketamine compared to R-/S-ketamine administration. The maximum concentration of S-norketamine was higher after S-ketamine administration. Time to standing position was significantly diminished after S-ketamine compared to R-/S-ketamine. Blood gases showed low-degree hypoxaemia and hypercarbia.
Resumo:
BACKGROUND: The arterial pharmacokinetics of ketamine and norketamine enantiomers after racemic ketamine or S-ketamine i.v. administration were evaluated in seven gelding ponies in a crossover study (2-month interval). METHODS: Anaesthesia was induced with isoflurane in oxygen via a face-mask and then maintained at each pony's individual MAC. Racemic ketamine (2.2 mg kg(-1)) or S-ketamine (1.1 mg kg(-1)) was injected in the right jugular vein. Blood samples were collected from the right carotid artery before and at 1, 2, 4, 8, 16, 32, 64, and 128 min after ketamine administration. Ketamine and norketamine enantiomer plasma concentrations were determined by capillary electrophoresis. Individual R-ketamine and S-ketamine concentration vs time curves were analysed by non-linear least square regression two-compartment model analysis using PCNonlin. Plasma disposition curves for R-norketamine and S-norketamine were described by estimating AUC, C(max), and T(max). Pulse rate (PR), respiratory rate (R(f)), tidal volume (V(T)), minute volume ventilation (V(E)), end-tidal partial pressure of carbon dioxide (PE'(CO(2))), and mean arterial blood pressure (MAP) were also evaluated. RESULTS: The pharmacokinetic parameters of S- and R-ketamine administered in the racemic mixture or S-ketamine administered separately did not differ significantly. Statistically significant higher AUC and C(max) were found for S-norketamine compared with R-norketamine in the racemic group. Overall, R(f), V(E), PE'(CO(2)), and MAP were significantly higher in the racemic group, whereas PR was higher in the S-ketamine group. CONCLUSIONS: Norketamine enantiomers showed different pharmacokinetic profiles after single i.v. administration of racemic ketamine in ponies anaesthetised with isoflurane in oxygen (1 MAC). Cardiopulmonary variables require further investigation.
Resumo:
Although both the subjective and physiological effects of abused psychotropic substances have been characterized, less is known about their effects on brain function. We examined the actions of intravenous diacetylmorphine (heroin), the most widely abused opioid, on regional cerebral blood flow (rCBF), as assessed by perfusion-weighted MR imaging (PWI) in a double-blind and placebo-controlled setting.
Resumo:
Surgical stress response markedly increases sympathetic nerve activity and catecholamine concentrations. This may contribute to peripheral vasoconstriction, reduced wound perfusion and subsequent tissue hypoxia. Opioids are known to depress the hypothalamic-adrenal response to surgery in a dose-dependent manner. We tested the hypothesis that continuous remifentanil administration produces improved subcutaneous tissue oxygen tension compared to fentanyl bolus administration. Forty-six patients undergoing major abdominal surgery were randomly assigned to receive either fentanyl bolus administration or continuous remifentanil infusion. Mean subcutaneous tissue oxygen values over the entire intra-operative period were significantly higher in the remifentanil group, when compared to the fentanyl group: 8 (2) kPa vs 6.7 (1.5) kPa, % CI difference: - 2.3 kPa to - 0.3 kPa, p = 0.013. Continuous intra-operative opioid administration may blunt vasoconstriction caused by surgical stress and adrenergic responses more than an equi-effective anaesthetic regimen based on smaller-dose bolus opioid administration.