32 resultados para python django bootstrap


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To evaluate image contrast and color setting on assessment of retinal structures and morphology in spectral-domain optical coherence tomography. METHODS Two hundred and forty-eight Spectralis spectral-domain optical coherence tomography B-scans of 62 patients were analyzed by 4 readers. B-scans were extracted in 4 settings: W + N = white background with black image at normal contrast 9; W + H = white background with black image at maximum contrast 16; B + N = black background with white image at normal contrast 12; B + H = black background with white image at maximum contrast 16. Readers analyzed the images to identify morphologic features. Interreader correlation was calculated. Differences between Fleiss-kappa correlation coefficients were examined using bootstrap method. Any setting with significantly higher correlation coefficient was deemed superior for evaluating specific features. RESULTS Correlation coefficients differed among settings. No single setting was superior for all respective spectral-domain optical coherence tomography parameters (P = 0.3773). Some variables showed no differences among settings. Hard exudates and subretinal fluid were best seen with B + H (κ = 0.46, P = 0.0237 and κ = 0.78, P = 0.002). Microaneurysms were best seen with W + N (κ = 0.56, P = 0.025). Vitreomacular interface, enhanced transmission signal, and epiretinal membrane were best identified using all color/contrast settings together (κ = 0.44, P = 0.042, κ = 0.57, P = 0.01, and κ = 0.62, P ≤ 0.0001). CONCLUSION Contrast and background affect the evaluation of retinal structures on spectral-domain optical coherence tomography images. No single setting was superior for all features, though certain changes were best seen with specific settings.