64 resultados para protozoan
Resumo:
Neutrophils are recruited to the site of parasite inoculation within a few hours of infection with the protozoan parasite Leishmania major. In C57BL/6 mice, which are resistant to infection, neutrophils are cleared from the site of s.c. infection within 3 days, whereas they persist for at least 10 days in susceptible BALB/c mice. In the present study, we investigated the role of macrophages (MPhi) in regulating neutrophil number. Inflammatory cells were recruited by i.p. injection of either 2% starch or L. major promastigotes. Neutrophils were isolated and cultured in the presence of increasing numbers of MPhi. Extent of neutrophil apoptosis positively correlated with the number of MPhi added. This process was strictly dependent on TNF because MPhi from TNF-deficient mice failed to induce neutrophil apoptosis. Assays using MPhi derived from membrane TNF knock-in mice or cultures in Transwell chambers revealed that contact with MPhi was necessary to induce neutrophil apoptosis, a process requiring expression of membrane TNF. L. major was shown to exacerbate MPhi-induced apoptosis of neutrophils, but BALB/c MPhi were not as potent as C57BL/6 MPhi in this induction. Our results emphasize the importance of MPhi-induced neutrophil apoptosis, and membrane TNF in the early control of inflammation.
Resumo:
In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.
Resumo:
Giardia lamblia is a common intestinal-dwelling protozoan and causes diarrhoea in humans and animals worldwide. For several years, a small number of drugs such as the 5-nitroimidazole metronidazole (MET) or the thiazolide nitazoxanide (NTZ) have been used for chemotherapy against giardiasis. However, various pre-clinical and clinical investigations revealed that antigiardial chemotherapy may be complicated by emergence of giardial resistance to these drugs. The present study addressed the question if isoflavones with antigiardial activity, such as daidzein (DAI) or formononetin (FOR), may serve as alternative compounds for treatment of giardiasis. For this purpose, the potential of G. lamblia clone WB C6 to form resistance to FOR and related isoflavones was tested in vitro. In the line of these experiments, a clone (C3) resistant to isoflavones, but sensitive to MET and NTZ, was generated. Affinity chromatography on DAI-agarose using cell-free extracts of G. lamblia trophozoites resulted in the isolation of a polypeptide of approximately 40 kDa, which was identified by mass spectrometry as a nucleoside hydrolase (NH) homologue (EAA37551.1). In a nucleoside hydrolase assay, recombinant NH hydrolysed all nucleosides with a preference for purine nucleosides and was inhibited by isoflavones. Using quantitative RT-PCR, the expression of genes that are potentially involved in resistance formation was analysed, namely NH and genes encoding variant surface proteins (VSPs, TSA417). The transcript level of the potential target NH was found to be significantly reduced in C3. Moreover, drastic changes were observed in VSP gene expression. This may indicate that resistance formation in Giardia against isoflavones is linked to, and possibly mediated by, altered gene expression. Taken together, our results suggest FOR or related isoflavones as an alternative antigiardial agent to overcome potential problems of resistance to drugs like MET or NTZ. However, the capacity of Giardia to develop resistance to isoflavones can potentially interfere with this alternative treatment of the disease.
Resumo:
Using nonperoxidic analogs of artemisinin and OZ277 (RBx11160), the strong in vitro antiplasmodial activities of the latter two compounds were shown to be peroxide bond dependent. In contrast, the weak activities of artemisinin and OZ277 against six other protozoan parasites were peroxide bond independent. These data support the iron-dependent artemisinin alkylation hypothesis.
Resumo:
The nitrothiazole analogue nitazoxanide [NTZ; 2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide] represents the parent compound of a class of drugs referred to as thiazolides and exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. NTZ and other thiazolides are active against a wide range of other intracellular and extracellular protozoan parasites in vitro and in vivo, but their mode of action and respective subcellular target(s) have only recently been investigated. In order to identify potential targets of NTZ and other thiazolides in Giardia lamblia trophozoites, we have developed an affinity chromatography system using the deacetylated derivative of NTZ, tizoxanide (TIZ), as a ligand. Affinity chromatography on TIZ-agarose using cell extracts of G. lamblia trophozoites resulted in the isolation of an approximately 35-kDa polypeptide, which was identified by mass spectrometry as a nitroreductase (NR) homologue (EAA43030.1). NR was overexpressed as a six-histidine-tagged recombinant protein in Escherichia coli, purified, and then characterized using an assay for oxygen-insensitive NRs with dinitrotoluene as a substrate. This demonstrated that the NR was functionally active, and the protein was designated GlNR1. In this assay system, NR activity was severely inhibited by NTZ and other thiazolides, demonstrating that the antigiardial activity of these drugs could be, at least partially, mediated through inhibition of GlNR1.
Resumo:
Besnoitia besnoiti, an apicomplexan protozoan parasite, is the causative agent of bovine besnoitiosis. This infection may dramatically affect body condition, and, in males, lead to irreversible infertility. While identification of clinical cases and their histopathological confirmation is relatively simple to carry out, finding subclinical forms of infection is more difficult, thus a more sensitive test for the identification of the etiological agent may be an appropriate diagnostic tool. We have developed the ITS1 rDNA-sequence-based conventional and real-time PCR which are highly sensitive and specific for the detection of B. besnoiti infection in cattle. A recombinant internal positive control was introduced to assess possible sample-related inhibitory effects during the amplification reaction and, in order to prevent false-positive results, a pre-PCR treatment of potentially contaminating dU-containing PCR product with uracil-DNA-glycosylase (UDG) was followed.
Resumo:
Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.
Resumo:
In addition to its conventional role during protein synthesis, eukaryotic elongation factor 1A is involved in other cellular processes. Several regions of interaction between eukaryotic elongation factor 1A and the translational apparatus or the cytoskeleton have been identified, yet the roles of the different post-translational modifications of eukaryotic elongation factor 1A are completely unknown. One amino acid modification, which so far has only been found in eukaryotic elongation factor 1A, consists of ethanolamine-phosphoglycerol attached to two glutamate residues that are conserved between mammals and plants. We now report that ethanolamine-phosphoglycerol is also present in eukaryotic elongation factor 1A of the protozoan parasite Trypanosoma brucei, indicating that this unique protein modification is of ancient origin. In addition, using RNA-mediated gene silencing against enzymes of the Kennedy pathway, we demonstrate that phosphatidylethanolamine is a direct precursor of the ethanolamine-phosphoglycerol moiety. Down-regulation of the expression of ethanolamine kinase and ethanolamine-phosphate cytidylyltransferase results in inhibition of phosphatidylethanolamine synthesis in T. brucei procyclic forms and, concomitantly, in a block in glycosylphosphatidylinositol attachment to procyclins and ethanolamine-phosphoglycerol modification of eukaryotic elongation factor 1A.
Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family
Resumo:
Background The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs) form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. Methodology/Principal Findings We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. Conclusions Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic proteins.
Resumo:
Mitochondrial translation in the parasitic protozoan Trypanosoma brucei relies on imported eukaryotic-type tRNAs as well as on bacterial-type ribosomes that have the shortest known rRNAs. Here we have identified the mitochondrial translation elongation factors EF-Tu, EF-Ts, EF-G1 and release factor RF1 of trypanosomatids and show that their ablation impairs growth and oxidative phosphorylation. In vivo labelling experiments and a SILAC-based analysis of the global proteomic changes induced by EF-Tu RNAi directly link EF-Tu to mitochondrial translation. Moreover, EF-Tu RNAi reveals downregulation of many nuclear encoded subunits of cytochrome oxidase as well as of components of the bc1-complex, whereas most cytosolic ribosomal proteins were upregulated. Interestingly, T. brucei EF-Tu has a 30-amino-acid-long, highly charged subdomain, which is unique to trypanosomatids. A combination of RNAi and complementation experiments shows that this subdomain is essential for EF-Tu function, but that it can be replaced by a similar sequence found in eukaryotic EF-1a, the cytosolic counterpart of EF-Tu. A recent cryo-electron microscopy study revealed that trypanosomatid mitochondrial ribosomes have a unique intersubunit space that likely harbours the EF-Tu binding site. These findings suggest that the trypanosomatid-specific EF-Tu subdomain serves as an adaption for binding to these unusual mitochondrial ribosomes.
Resumo:
Phospholipids are not only major building blocks of biological membranes but fulfill a wide range of critical functions that are often widely unrecognized. In this review, we focus on phosphatidylethanolamine, a major glycerophospholipid class in eukaryotes and bacteria, which is involved in many unexpected biological processes. We describe (i) the ins, i.e. the substrate sources and biochemical reactions involved in phosphatidylethanolamine synthesis, and (ii) the outs, i.e. the different roles of phosphatidylethanolamine and its involvement in various cellular events. We discuss how the protozoan parasite, Trypanosoma brucei, has contributed and may contribute in the future as eukaryotic model organism to our understanding of phosphatidylethanolamine homeostasis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Resumo:
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.
Resumo:
OBJECTIVES The protozoan parasite Giardia lamblia causes giardiasis, a persistent diarrhoea. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for the treatment of giardiasis. Nitroreductases may play a role in activating these drugs. G. lamblia contains two nitroreductases, GlNR1 and GlNR2. The aim of this work was to elucidate the role of GlNR2. METHODS Expression of GlNR2 was analysed by reverse transcription PCR. Recombinant GlNR2 was overexpressed in G. lamblia and drug susceptibility was analysed. Recombinant GlNR2 was subjected to functional assays. Escherichia coli expressing full-length or truncated GlNR1 and GlNR2 were grown in the presence of nitro compounds. Using E. coli reporter strains for nitric oxide and DNA damage responses, we analysed whether GlNR1 and GlNR2 elicited the respective responses in the presence, or absence, of the drugs. RESULTS G. lamblia trophozoites overexpressing GlNR2 were less susceptible to both nitro drugs as compared with control trophozoites. GlNR2 was a functional nitroreductase when expressed in E. coli. E. coli expressing GlNR1 was more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions. E. coli expressing GlNR2 was not susceptible to either drug. In reporter strains, GlNR1, but not GlNR2, elicited nitric oxide and DNA repair responses, even in the absence of nitro drugs. CONCLUSIONS These findings suggest that GlNR2 is an active nitroreductase with a mode of action different from that of GlNR1. Thus, susceptibility to nitro drugs may depend not only on activation, but also on inactivation of the drugs by specific nitroreductases.
Resumo:
Trypanosoma brucei is the causative agent of Human African Trypanosomiasis. Trypanosomes are early diverged protozoan parasites and show significant differences in their gene expression compared with higher eukaryotes. Due to a lack of individual gene promoters, large polycistronic transcripts are produced and individual mRNAs mature by trans-splicing and polyadenylation. In the absence of transcriptional control, regulation of gene expression occurs post-transcriptionally mainly by control of transcript stability and translation. Regulation of mRNA export from the nucleus to the cytoplasm might be an additional post-transcriptional event involved in gene regulation. However, our knowledge about mRNA export in trypanosomes is very limited. Although export factors of higher eukaryotes are reported to be conserved, only a few orthologues can be readily identified in the genome of T. brucei. Hence, biochemical approaches are needed to identify the export machinery of trypanosomes. Here, we report the functional characterization of the essential mRNA export factor TbMex67. TbMex67 contains a unique and essential N-terminal zinc finger motif. Furthermore, we could identify two interacting export factors namely TbMtr2 and the karyopherin TbIMP1. Our data show that the general heterodimeric export receptor Mex67-Mtr2 is conserved throughout the eukaryotic kingdom albeit exhibiting parasite-specific features.
Resumo:
Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm) infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ) stained positive for CD206 and M-CSF-derived macrophages (M-Mφ) for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most suitable model to study Lm infection of macrophages.