49 resultados para props (object genres)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the availability of lower cost but highly skilled software development labor from offshore regions, entrepreneurs from developed countries who do not have software development experience can utilize this workforce to develop innovative software products. In order to succeed in offshored innovation projects, the often extreme knowledge boundaries between the onsite entrepreneur and the offshore software development team have to be overcome. Prior research has proposed that boundary objects are critical for bridging such boundaries – if they are appropriately used. Our longitudinal, revelatory case study of a software innovation project is one of the first to explore the role of the software prototype as a digital boundary object. Our study empirically unpacks five use practices that transform the software prototype into a boundary object such that knowledge boundaries are bridged. Our findings provide new theoretical insights for literature on software innovation and boundary objects, and have implications for practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration,and the potential to perform image processing operations on-chip and in real-time. Here, the major challenges and design drivers for ground-based and space-based optical observation strategies for objects in Earth orbit have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and spacebased strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey assuming a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris was simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cimpian & Salomon (C&S) present promising steps towards understanding the cognitive underpinnings of adult essentialism. However, their approach is less convincing regarding ontogenetic and evolutionary aspects. In contrast to C&S's claim, the so-called inherence heuristic, though perhaps vital in adult reasoning, seems an implausible candidate for the developmental and evolutionary foundations of psychological essentialism. A more plausible candidate is kind-based object individuation that already embodies essentialist modes of thinking and that is present in infants and nonhuman primates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Answering run-time questions in object-oriented systems involves reasoning about and exploring connections between multiple objects. Developer questions exercise various aspects of an object and require multiple kinds of interactions depending on the relationships between objects, the application domain and the differing developer needs. Nevertheless, traditional object inspectors, the essential tools often used to reason about objects, favor a generic view that focuses on the low-level details of the state of individual objects. This leads to an inefficient effort, increasing the time spent in the inspector. To improve the inspection process, we propose the Moldable Inspector, a novel approach for an extensible object inspector. The Moldable Inspector allows developers to look at objects using multiple interchangeable presentations and supports a workflow in which multiple levels of connecting objects can be seen together. Both these aspects can be tailored to the domain of the objects and the question at hand. We further exemplify how the proposed solution improves the inspection process, introduce a prototype implementation and discuss new directions for extending the Moldable Inspector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the basal functionality of peripheral vision in those sports-games situations, a Multiple Object Tracking (MOT) task that requires to track a certain number of targets amidst distractors, was chosen. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). While eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time as well as saccadic reaction time were calculated as dependent variables. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the capability of using peripheral vision in those sports-games situations, a Multiple-Object-Tracking task that requires to track a certain number of targets amidst distractors, was chosen to determine the sensitivity of detecting target changes with peripheral vision only. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). Eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time and saccadic reaction time (change onset to saccade onset) were calculated and eye-movements were recorded. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common form of violence investigated in legal medicine is blunt trauma caused by striking with different objects. The injuries and medical consequences have been widely examined, whereas the forces and especially the energies acting on impact have rarely been analyzed. This study focuses on how the impact energy of different striking objects depends on their characteristics. A total of 1170 measurements of horizontal strikes against a static and relatively heavy pendulum have been acquired with 13 volunteers. The main focus was laid on how the weight, the length, and the center of mass of the different striking objects influenced the striking energy. The results show average impact energies in the range of 67.3 up to 311.5 J for men with an optimum weight of about 1.3 kg with its center of mass in the far end quarter for a 1-m-long striking object. The average values for women range from 30 to 202.6 J, with an optimum weight between 1.65 and 2.2 kg and similar settings for the center of mass as the men. Also, the impact energies are getting higher with shorter object lengths and reach a maximum at a length of about 0.3 to 0.4 m. The male volunteers' impact energy was on average by 84.2 % higher than the values of the female volunteers, where the impact masses were very similar and the impact velocities played the key role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of this article demonstrates how to identify context-aware types of e-Learning objects (eLOs) derived from the subject domains. This perspective is taken from an engineering point of view and is applied during requirements elicitation and analysis relating to present work in constructing an object-oriented (OO), dynamic, and adaptive model to build and deliver packaged e-Learning courses. Consequently, three preliminary subject domains are presented and, as a result, three primitive types of eLOs are posited. These types educed from the subject domains are of structural, conceptual, and granular nature. Structural objects are responsible for the course itself, conceptual objects incorporate adaptive and logical interoperability, while granular objects congregate granular assets. Their differences, interrelationships, and responsibilities are discussed. A major design challenge relates to adaptive behaviour. Future research addresses refinement on the subject domains and adaptive hypermedia systems.