40 resultados para potential land productivity
Resumo:
The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review differences of eLUC quantification methods and apply an Earth System Model (ESM) of Intermediate Complexity to quantify them. We find that the magnitude of effects due to merely conceptual differences between ESM and offline vegetation model-based quantifications is ~ 20 % for today. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate secondary component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.
Resumo:
Large-scale land acquisition, or "land grabbing", has become a key research topic among scholars interested in agrarian change, development, and the environment. The term "land acquisitions" refers to a highly contested process in terms of governance and impacts on livelihoods and human rights. This book focuses on South-East Asia. A series of thematic and in-depth case studies put "land grabbing" into specific historical and institutional contexts. The volume also offers a human rights analysis of the phenomenon, examining the potential and limits of human rights mechanisms aimed at preventing and mitigating land grabs' negative consequences.
Resumo:
Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.
Resumo:
Ensuring sustainable use of natural resources is crucial for maintaining the basis for our livelihoods. With threats from climate change, disputes over water, biodiversity loss, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) practices will only increase in the future. For years already, various national and international organizations (GOs, NGOs, donors, research institutes, etc.) have been working on alternative forms of land management. And numerous land users worldwide – especially small farmers – have been testing, adapting, and refining new and better ways of managing land. All too often, however, the resulting SLM knowledge has not been sufficiently evaluated, documented and shared. Among other things, this has often prevented valuable SLM knowledge from being channelled into evidence-based decision-making processes. Indeed, proper knowledge management is crucial for SLM to reach its full potential. Since more than 20 years, the international WOCAT network documents and promotes SLM through its global platform. As a whole, the WOCAT methodology comprises tools for documenting, evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing, analysis and use for decision support in the field, at the planning level, and in scaling up identified good practices. In early 2014, WOCAT’s growth and ongoing improvement culminated in its being officially recognized by the UNCCD as the primary recommended database for SLM best practices. Over the years, the WOCAT network confirmed that SLM helps to prevent desertification, to increase biodiversity, enhance food security and to make people less vulnerable to the effects of climate variability and change. In addi- tion, it plays an important role in mitigating climate change through improving soil organic matter and increasing vegetation cover. In-depth assessments of SLM practices from desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats. The impacts mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Among others, favourable local-scale cost-benefit relationships of SLM practices play a crucial role in their adoption. An economic analysis from the WOCAT database showed that land users perceive a large majority of the technologies as having benefits that outweigh costs in the long term. The high investment costs associated with some practices may constitute a barrier to adoption, however, where appropriate, short-term support for land users can help to promote these practices. The increased global concerns on climate change, disaster risks and food security redirect attention to, and trigger more funds for SLM. To provide the necessary evidence-based rationale for investing in SLM and to reinforce expert and land users assessments of SLM impacts, more field research using inter- and transdisciplinary approaches is needed. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the EU FP7 projects CASCADE and RECARE.
Resumo:
Major volcanic eruptions generate widespread ocean cooling, which reduces upper ocean stratification. This effect has the potential to increase nutrient delivery into the euphotic zone and boost biological productivity. Using externally forced last millennium simulations of three climate/Earth System models (Model for Interdisciplinary Research On Climate (MIROC), Community Earth System Model (CESM), and LOch-Vecode-Ecbilt-CLio-agIsm Model (LOVECLIM)), we test the hypothesis that large volcanic eruptions intensify nutrient-driven export production. It is found that strong volcanic radiative forcing enhances the likelihood of eastern Pacific El Niño-like warming in CESM and LOVECLIM. This leads to an initial reduction of nutrients and export production in the eastern equatorial Pacific. However, this initial response reverses after about 3 years in association with La Niña cooling. The resulting delayed enhancement of biological production resembles the multiyear response in MIROC. The model simulations show that volcanic impacts on tropical Pacific dynamics and biogeochemistry persist for several years, thus providing a new source for potential multiyear ecosystem predictability.
Resumo:
This paper examines how the geospatial accuracy of samples and sample size influence conclusions from geospatial analyses. It does so using the example of a study investigating the global phenomenon of large-scale land acquisitions and the socio-ecological characteristics of the areas they target. First, we analysed land deal datasets of varying geospatial accuracy and varying sizes and compared the results in terms of land cover, population density, and two indicators for agricultural potential: yield gap and availability of uncultivated land that is suitable for rainfed agriculture. We found that an increase in geospatial accuracy led to a substantial and greater change in conclusions about the land cover types targeted than an increase in sample size, suggesting that using a sample of higher geospatial accuracy does more to improve results than using a larger sample. The same finding emerged for population density, yield gap, and the availability of uncultivated land suitable for rainfed agriculture. Furthermore, the statistical median proved to be more consistent than the mean when comparing the descriptive statistics for datasets of different geospatial accuracy. Second, we analysed effects of geospatial accuracy on estimations regarding the potential for advancing agricultural development in target contexts. Our results show that the target contexts of the majority of land deals in our sample whose geolocation is known with a high level of accuracy contain smaller amounts of suitable, but uncultivated land than regional- and national-scale averages suggest. Consequently, the more target contexts vary within a country, the more detailed the spatial scale of analysis has to be in order to draw meaningful conclusions about the phenomena under investigation. We therefore advise against using national-scale statistics to approximate or characterize phenomena that have a local-scale impact, particularly if key indicators vary widely within a country.
Resumo:
Soils provide us with over 90% of all human food, livestock feed, fibre and fuel on Earth. Soils, however, have more than just productive functions. The key challenge in coming years will be to address the diverse and potentially conflicting demands now being made by human societies and other forms of life, while ensuring that future generations have the same potential to use soils and land of comparable quality. In a multi-level stakeholder approach, down-to-earth action will have to be supplemented with measures at various levels, from households to communities, and from national policies to international conventions. Knowledge systems, both indigenous and scientific, and related research and learning processes must play a central role. Ongoing action can be enhanced through a critical assessment of the impact of past achievements, and through better cooperation between people and institutions.
Resumo:
entral European grasslands vary widely in productivity and in mowing and grazing regimes. The resulting differences in competition and heterogeneity among grasslands might have direct effects on plants, but might also affect the growth and morphology of their offspring through maternal effects or adaptive evolution. To test for such transgenerational effects, we grew plants of the clonal herb Trifolium repens from seeds collected in 58 grassland sites differing in productivity and mowing and grazing intensities in different treatments: without competition, with homogeneous competition, and with heterogeneous competition. In the competition-free treatment, T. repens from more productive, less frequently mown, and less intensively grazed sites produced more vegetative offspring, but this was not the case in the other treatments. When grown among or in close proximity to competitors, T. repens plants did not show preferential growth towards open spaces (i.e., no horizontal foraging), but did show strong vertical foraging by petiole elongation. In the homogeneous competition treatment, petiole length increased with the productivity of the parental site, but this was not the case in the heterogeneous competition treatment. Moreover, petiole length increased with mowing frequency and grazing intensity of the parental site in all but the homogeneous competition treatment. In summary, although the expression of differences between plants from sites with different productivities and land-use intensities depended on the experimental treatment, our findings imply that there are transgenerational effects of land use on the morphology and performance of T. repens.
Resumo:
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.
Resumo:
Aims The relationship between biodiversity and ecosystem functioning is among the most active areas of ecological research. Furthermore, enhancing the diversity of degraded ecosystems is a major goal in applied restoration ecology. In grasslands, many species may be locally absent due to dispersal or microsite limitation and may therefore profit from mechanical disturbance of the resident vegetation. We established a seed addition and disturbance experiment across several grassland sites of different land use to test whether plant diversity can be increased in these grasslands. Additionally, the experiment will allow us testing the consequences of increased plant diversity for ecosystem processes and for the diversity of other taxa in real-world ecosystems. Here we present details of the experimental design and report results from the first vegetation survey one year after disturbance and seed addition. Moreover, we tested whether the effects of seed addition and disturbance varied among grassland depending on their land use or pre-disturbance plant diversity. Methods A full-factorial experiment was installed in 73 grasslands in three regions across Germany. Grasslands were under regular agricultural use, but varied in the type and the intensity of management, thereby representing the range of management typical for large parts of Central Europe. The disturbance treatment consisted of disturbing the top 10 cm of the sward using a rotavator or rotary harrow. Seed addition consisted of sowing a high-diversity seed mixture of regional plant species. These species were all regionally present, but often locally absent, depending on the resident vegetation composition and richness of each grassland. Important findings One year after sward disturbance it had significantly increased cover of bare soil, seedling species richness and numbers of seedlings. Seed addition had increased plant species richness, but only in combination with sward disturbance. The increase in species richness, when both seed addition and disturbance was applied, was higher at high land-use intensity and low resident diversity. Thus, we show that at least the early recruitment of many species is possible also at high land-use intensity, indicating the potential to restore and enhance biodiversity of species-poor agricultural grasslands. Our newly established experiment provides a unique platform for broad-scale research on the land-use dependence of future trajectories of vegetation diversity and composition and their effects on ecosystem functioning.