49 resultados para population genetic structure
Resumo:
Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes), and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations.Methods We established 306 experimental test populations at a previously unoccupied lake shore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured.Important findings Despite these climatic extremes, 27 of the established populations survived until the end of the experiment in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments.
Resumo:
Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population.
Resumo:
Native to sub-Saharan Africa, Aethina tumida Murray (Coleoptera: Nitidulidae) is now an invasive pest of honey bee, Apis mellifera L., colonies in Australia and North America. Knowledge about the introduction (s) of this beetle from Africa into and among the current ranges will elucidate pest populations and invasion pathways and contribute to knowledge of how a parasite expands in new populations. We examined genetic variation in adult beetle samples from the United States, Australia, Canada, and Africa by sequencing a 912-base pair region of the mitochondrial DNA cytochrome c oxidase subunit I gene and screening 10 informative microsatellite loci. One Canadian introduction of small hive beetles can be traced to Australia, whereas the second introduction seems to have come from the United States. Beetles now resident in Australia were of a different African origin than were beetles in North America. North American beetles did not show covariance between two mitochondrial haplotypes and their microsatellite frequencies, suggesting that these beetles have a shared source despite having initial genetic structure within their introduced range. Excellent dispersal of beetles, aided in some cases by migratory beekeeping and the bee trade, seems to lead to panmixis in the introduced populations as well as in Africa.
Resumo:
The three-spined stickleback is a widespread Holarctic species complex that radiated from the sea into freshwaters after the retreat of the Pleistocene ice sheets. In Switzerland, sticklebacks were absent with the exception of the far northwest, but different introduced populations have expanded to occupy a wide range of habitats since the late 19th century. A well-studied adaptive phenotypic trait in sticklebacks is the number of lateral plates. With few exceptions, freshwater and marine populations in Europe are fixed for either the low plated phenotype or the fully plated phenotype, respectively. Switzerland, in contrast, harbours in close proximity the full range of phenotypic variation known from across the continent. We addressed the phylogeographic origins of Swiss sticklebacks using mitochondrial partial cytochrome b and control region sequences. We found only five different haplotypes but these originated from three distinct European regions, fixed for different plate phenotypes. These lineages occur largely in isolation at opposite ends of Switzerland, but co-occur in a large central part. Across the country, we found a strong correlation between a microsatellite linked to the high plate ectodysplasin allele and the mitochondrial haplotype from a region where the fully plated phenotype is fixed. Phylogenomic and population genomic analysis of 481 polymorphic amplified fragment length polymorphism loci indicate genetic admixture in the central part of the country. The same part of the country also carries elevated within-population phenotypic variation. We conclude that during the recent invasive range expansion of sticklebacks in Switzerland, adaptive and neutral between-population genetic variation was converted into within-population variation, raising the possibility that hybridization between colonizing lineages contributed to the ecological success of sticklebacks in Switzerland.
Resumo:
We examined genetic structure among five species of Lake Victoria haplochromine cichlids in four island communities, using a full factorial sampling design that compared genetic differentiation between pairs of species and populations of varying morphological similarity and geographical proximity. We found that allopatric conspecific populations were on average significantly more strongly differentiated than sympatric heterospecific populations of morphologically similar species. Allopatric heterospecific populations of morphologically dissimilar species were most differentiated. Our work demonstrates that phenotypic divergence can be maintained and perhaps even evolve in sympatry despite considerable gene flow between species. Conversely, phenotypic resemblance among conspecific populations can be maintained despite geographical isolation. Additionally we show that anthropogenically increased hybridization does not affect all sympatric species evenly but predominantly affects morphologically similar and closely related species. This has important implications for the evolution of reproductive isolation between species These findings are also consistent with the hypothesis of speciation reversal due to weakening of divergent selection and reproductive isolation as a consequence of habitat homogenization and offers an evolutionary mechanistic explanation for the observation that species poor assemblages in turbid areas of the lake are characterized by just one or two species in each of a few morphologically distinct genera.
Resumo:
In the field of molecular and epidemiological parasitology, characterization of fast evolving genetic markers appears as an important challenge to consider the diversity and genetic structure of parasites. The study of respective populations can help us to understand their adaptive strategies to survive and perpetuate the species within different host populations, all trying to resist infection. In the past, the relative monomorphic features of Echinococcus multilocularis, the causative agent of alveolar echinococcosis and a severe human parasitic disease, did not stimulate studies dealing with the genetic variability of Echinococcus species or respective populations. A recently developed, characterized and validated original multilocus microsatellite, named EmsB, tandemly repeated in the genome, offered an additional opportunity for this line of investigation. We have compiled in this review new insights brought by this molecular tracker on the transmission activity of Echinococcus among different hosts and at different geographical scales.
Mutational spectrum and linkage disequilibrium patterns at the ornithine transcarbamylase gene (OTC)
Resumo:
Ornithine transcarbamylase (OTC; EC 2.1.3.3) is a hepatic enzyme involved in ammonia elimination via the urea cycle. Since the sequence of the OTC gene was reported many types of mutations continue to be found in OTC deficiency patients, continuing to increase the already wide mutational spectrum known for this gene. In this study we present the clinical, biochemical and molecular features of thirteen late-onset OTC deficiency patients. Mutations were identified in all these patients, among which six were novel point substitutions (L59R, A137P, L148S, Y176L, L186P, and K210N) and one was a 2-bp deletion at exon 4 (341-342delAA). In addition, a de novo genomic deletion of maternal origin encompassing exons 1 to 5 was also identified by the analysis of LD patterns using intragenic polymorphic markers. This work exemplifies the potential value of population genetic studies for the detection of large deletions.
Resumo:
Adaptive and non-adaptive evolutionary processes are likely to play important roles in biological invasions but their relative importance has hardly ever been quantified. Moreover, although genetic differences between populations in their native versus invasive ranges may simply reflect different positions along a genetic latitudinal cline, this has rarely been controlled for. To study non-adaptive evolutionary processes in invasion of Mimulus guttatus, we used allozyme analyses on offspring of seven native populations from western North America, and three and four invasive populations from Scotland and New Zealand, respectively. To study quantitative genetic differentiation, we grew 2474 plants representing 17 native populations and the seven invasive populations in a common greenhouse environment under temporarily and permanently wet soil conditions. The absence of allozyme differentiation between the invasive and native range indicates that multiple genotypes had been introduced to Scotland and New Zealand, and suggests that founder effects and genetic drift played small, if any, roles in shaping genetic structure of invasive M. guttatus populations. Plants from the invasive and native range did not differ in phenology, floral traits and sexual and vegetative reproduction, and also not in plastic responses to the watering treatments. However, plants from the invasive range produced twice as many flower-bearing upright side branches than the ones from the native populations. Further, with increasing latitude of collection, vegetative reproduction of our experimental plants increased while sexual reproduction decreased. Plants from the invasive and native range shared these latitudinal clines. Because allozymes showed that the relatedness between native and invasive populations did not depend on latitude, this suggests that plants in the invasive regions have adapted to the local latitude. Overall, our study indicates that quantitative genetic variation of M. guttatus in its two invasive regions is shaped by adaptive evolutionary processes rather than by non-adaptive ones. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.
Resumo:
To test the hypothesis of a heritable base of ectopic ureters (EU) in Entlebucher Mountain Dogs (EMD) and to elucidate associated risk factors and mode of inheritance of the disease, 565 EMD were clinically investigated and population genetic analyses performed. Based on the location of the most caudal termination of the ureteral openings, 552 EMD were classified into three phenotype groups trigone, intravesically and extravesically ectopic based on results of abdominal sonography, urethra-cystoscopy and/or contrast-enhanced computed tomography. One-third (32.9%) of the phenotyped animals had normal terminations of both ureters in the bladder trigone, 47.3% had at least one intravesicular ectopic termination and 19.8% had at least one extravesicular ectopic termination. Multivariate mixed logistic regression revealed gender as a risk factor associated with EU as males were more often affected than females. Complex segregation analysis indicated a hereditary basis for EU in EMD and the involvement of a major gene in the occurrence of the extravesicular EU phenotype.
Resumo:
This Trans-Himalayan tale unites two narratives, an historical account of scholarly thinking regarding linguistic phylogeny in eastern Eurasia alongside a reconstruction of the ethnolinguistic prehistory of eastern Eurasia based on linguistic and human population genetic phylogeography. The first story traces the tale of transformation in thought regarding language relationships in eastern Eurasia from Tibeto-Burman to Trans-Himalayan. The path is strewn with defunct family trees such as Indo-Chinese, Sino-Tibetan, Sino-Himalayan and Sino-Kiranti. In the heyday of racism in scholarship, Social Darwinism coloured both language typology and the phylogenetic models of language relationship in eastern Eurasia. Its influential role in the perpetuation of the Indo-Chinese model is generally left untold. The second narrative presents a conjectural reconstruction of the ethnolinguistic prehistory of eastern Eurasia based on possible correlations between genes and language communities. In so doing, biological ancestry and linguistic affinity are meticulously distinguished, a distinction which the language typologists of yore sought to blur, although the independence of language and race was stressed time and again by prominent historical linguists.
Resumo:
Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.
Resumo:
A population-genetic analysis is performed of a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under frequency-dependent disruptive selection caused by intraspecific competition for a continuum of resources. The modifier locus determines the degree of dominance at the trait level. We establish the conditions when a modifier allele can invade and when it becomes fixed if sufficiently frequent. In general, these are not equivalent because an unstable internal equilibrium may exist and the condition for successful invasion of the modifier is more restrictive than that for eventual fixation from already high frequency. However, successful invasion implies global fixation, i.e., fixation from any initial condition. Modifiers of large effect can become fixed, and also invade, in a wider parameter range than modifiers of small effect. We also study modifiers with a direct, frequency-independent deleterious fitness effect. We show that they can invade if they induce a sufficiently high level of dominance and if disruptive selection on the ecological trait is strong enough. For deleterious modifiers, successful invasion no longer implies global fixation because they can become stuck at an intermediate frequency due to a stable internal equilibrium. Although the conditions for invasion and for fixation if sufficiently frequent are independent of the linkage relation between the two loci, the rate of spread depends strongly on it. The present study provides further support to the view that evolution of dominance may be an efficient mechanism to remove unfit heterozygotes that are maintained by balancing selection. It also demonstrates that an invasion analysis of mutants of very small effect is insufficient to obtain a full understanding of the evolutionary dynamics under frequency-dependent selection.
Resumo:
A specific PCR for the identification of K-12 strains, based on the genetic structure of the O-antigen gene cluster (rfb) of Escherichia coli K-12, is described. The assay clearly differentiates E. coli K-12-derived strains from other E. coli strains used in the laboratory or isolated from human and animal clinical specimens, from food, or from environmental samples. Moreover, lineages of K-12 strains can be distinguished with a second PCR based on the same gene cluster. The method presents a useful tool in identifying K-12 for monitoring strains which are used as biologically safe vehicles in biotechnological research, development, and production processes.
Resumo:
Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.
Resumo:
Understanding the genetic background of invading species can be crucial information clarifying why they become invasive. Intraspecific genetic admixture among lineages separated in the native ranges may promote the rate and extent of an invasion by substantially increasing standing genetic variation. Here we examine the genetic relationships among threespine stickleback that recently colonized Switzerland. This invasion results from several distinct genetic lineages that colonized multiple locations and have since undergone range expansions, where they coexist and admix in parts of their range. Using 17 microsatellites genotyped for 634 individuals collected from 17 Swiss and two non-Swiss European sites, we reconstruct the invasion of stickleback and investigate the potential and extent of admixture and hybridization among the colonizing lineages from a population genetic perspective. Specifically we test for an increase in standing genetic variation in populations where multiple lineages coexist. We find strong evidence of massive hybridization early on, followed by what appears to be recent increased genetic isolation and the formation of several new genetically distinguishable populations, consistent with a hybrid ‘superswarm’. This massive hybridization and population formation event(s) occurred over approximately 140 years and likely fuelled the successful invasion of a diverse range of habitats. The implications are that multiple colonizations coupled with hybridization can lead to the formation of new stable genetic populations potentially kick-starting speciation and adaptive radiation over a very short time.