89 resultados para plant diversity
Resumo:
The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.
Resumo:
1. Positive interactions among plants can increase species richness by relaxing environmental filters and providing more heterogeneous environments. However, it is not known if facilitation could affect coexistence through other mechanisms. Most studies on plant coexistence focus on negative frequency-dependent mechanisms (decreasing the abundance of common species); here, we test if facilitation can enhance coexistence by giving species an advantage when rare. 2. To test our hypothesis, we used a global data set from drylands and alpine environments and measured the intensity of facilitation (based on co-occurrences with nurse plants) for 48 species present in at least 4 different sites and with a range of abundances in the field. We compared these results with the degree of facilitation experienced by species which are globally rare or common (according to the IUCN Red List), and with a larger data base including over 1200 co-occurrences of target species with their nurses. 3. Facilitation was stronger for rare species (i.e. those having lower local abundances or considered endangered by the IUCN) than for common species, and strongly decreased with the abundance of the facilitated species. These results hold after accounting for the distance of each species from its ecological optimum (i.e. the degree of functional stress it experiences). 4. Synthesis. Our results highlight that nurse plants not only increase the number of species able to colonize a given site, but may also promote species coexistence by preventing the local extinction of rare species. Our findings illustrate the role that nurse plants play in conserving endangered species and link the relationship between facilitation and diversity with coexistence theory. As such, they provide further mechanistic understanding on how facilitation maintains plant diversity.
Resumo:
This study explores whether the high variability of vascular plant diversity among alpine plant communities can be explained by stress and/or disturbance intensities. Species numbers of 14 alpine plant communities were sampled in the Swiss Alps. To quantify the intensity of 13 stress and 6 disturbance factors potentially controlling plant life in these communities, a survey was conducted by asking numerous specialists in alpine vegetation to assess the importance of the different factors for each community. The estimated values were combined in stress- and disturbance-indices which were compared with diversity according to the Intermediate Stress Hypothesis, the Intermediate Disturbance Hypothesis, and the Dynamic Equilibrium Model, respectively. Each of these theories explained a part of the variability in the species richness, but only the Dynamic Equilibrium Model provided a complete and consistent explanation. The last model suggests that community species richness within the alpine life zone is generally controlled by stress intensity. Disturbance and competition seem to play a secondary role by fine-tuning diversity in specific communities. As diversity is primarily limited by stress, a moderation of temperature-related stress factors, as a result of global warming, may cause a shift of the equilibrium between stress, disturbance, and competition in alpine ecosystems.
Resumo:
1. Recent theoretical studies suggest that the stability of ecosystem processes is not governed by diversity per se, but by multitrophic interactions in complex communities. However, experimental evidence supporting this assumption is scarce.2. We investigated the impact of plant diversity and the presence of above- and below-ground invertebrates on the stability of plant community productivity in space and time, as well as the interrelationship between both stability measures in experimental grassland communities.3. We sampled above-ground plant biomass on subplots with manipulated above- and below-ground invertebrate densities of a grassland biodiversity experiment (Jena Experiment) 1, 4 and 6 years after the establishment of the treatments to investigate temporal stability. Moreover, we harvested spatial replicates at the last sampling date to explore spatial stability.4. The coefficient of variation of spatial and temporal replicates served as a proxy for ecosystem stability. Both spatial and temporal stability increased to a similar extent with plant diversity. Moreover, there was a positive correlation between spatial and temporal stability, and elevated plant density might be a crucial factor governing the stability of diverse plant communities.5. Above-ground insects generally increased temporal stability, whereas impacts of both earthworms and above-ground insects depended on plant species richness and the presence of grasses. These results suggest that inconsistent results of previous studies on the diversity–stability relationship have in part been due to neglecting higher trophic-level interactions governing ecosystem stability.6. Changes in plant species diversity in one trophic level are thus unlikely to mirror changes in multitrophic interrelationships. Our results suggest that both above- and below-ground invertebrates decouple the relationship between spatial and temporal stability of plant community productivity by differently affecting the homogenizing mechanisms of plants in diverse plant communities.7.Synthesis. Species extinctions and accompanying changes in multitrophic interactions are likely to result not only in alterations in the magnitude of ecosystem functions but also in its variability complicating the assessment and prediction of consequences of current biodiversity loss.
Resumo:
Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.
Resumo:
Despite its appeal to explain plant invasions, the enemy release hypothesis (ERH) remains largely unexplored for tropical forest trees. Even scarcer are ERH studies conducted on the same host species at both the community and biogeographical scale, irrespective of the system or plant life form. In Cabrits National Park, Dominica, we observed patterns consistent with enemy release of two introduced, congeneric mahogany species, Swietenia macrophylla and S. mahagoni, planted almost 50 years ago. Swietenia populations at Cabrits have reproduced, with S. macrophylla juveniles established in and out of plantation areas at densities much higher than observed in its native range. Swietenia macrophylla juveniles also experienced significantly lower leaf-level herbivory (~3.0%) than nine co-occurring species native to Dominica (8.4–21.8%), and far lower than conspecific herbivory observed in its native range (11%–43%, on average). These complimentary findings at multiple scales support ERH, and confirm that Swietenia has naturalized at Cabrits. However, Swietenia abundance was positively correlated with native plant diversity at the seedling stage, and only marginally negatively correlated with native plant abundance for stems ≥1-cm dbh. Taken together, these descriptive patterns point to relaxed enemy pressure from specialized enemies, specifically the defoliator Steniscadia poliophaea and the shoot-borer Hypsipyla grandella, as a leading explanation for the enhanced recruitment of Swietenia trees documented at Cabrits.
Resumo:
In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.
Resumo:
Aim: We investigate the response of vegetation composition and plant diversity to increasing land clearance, burning and agriculture at the Mesolithic–Neolithic transition (c. 6400–5000 bc) when first farming was introduced. Location: The Valais, a dry alpine valley in Switzerland. Methods: We combine high-resolution pollen, microscopic charcoal and sedimentological data to reconstruct past vegetation, fire and land use. Pollen evenness, rarefaction-based and accumulation-based palynological richness analyses were used to reconstruct past trends in plant diversity. Results: Our results show that from c. 5500 cal. yr bc, slash-and-burn activities created a more open landscape for agriculture, at the expense of Pinus and Betula forests. Land clearance by slash-and-burn promoted diverse grassland ecosystems, while on the long term it reduced woodland and forest diversity, affecting important tree species such as Ulmus and Tilia. Main conclusions: Understanding the resilience of Alpine ecosystems to past disturbance variability is relevant for future nature conservation plans. Our study suggests that forecasted land abandonment in the Alps will lead to pre-Neolithic conditions, with significant biodiversity losses in abandoned grassland ecosystems. Thus, management measures for biodiversity, such as ecological compensation areas, are needed in agricultural landscapes with a millennial history of human impact, such as the non-boreal European lowlands. Our study supports the hypothesis that species coexistence is maximized at an intermediate level of disturbances. For instance, species richness decreased when fire exceeded the quasi-natural variability observed during the Mesolithic times. Under a more natural disturbance regime, rather closed Pinus sylvestris and mixed oak forests would prevail.
Resumo:
Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions, we measured fine root radiocarbon (14C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27) than in forests 3.1 ± 0.5 g (n = 27) (p < 0.05), the mean age of C in fine roots in forests averaged 11.3 ± 1.8 yr and was older and more variable compared to grasslands 1.7 ± 0.4 yr (p < 0.001). We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated with plant diversity (r = 0.65) and with the number of perennial species (r = 0.77). Fine root mean C age in grasslands was also affected by study region with averages of 0.7 ± 0.1 yr (n = 9) on mostly organic soils in northern Germany and of 1.8 ± 0.3 yr (n = 9) and 2.6 ± 0.3 (n = 9) in central and southern Germany (p < 0.05). This was probably due to differences in soil nutrient contents and soil moisture conditions between study regions, which affected plant species diversity and the presence of perennial species. Our results indicate more long-lived roots or internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.
Resumo:
Climate, land use and fire are strong determinants of plant diversity, potentially resulting in local extinctions, including rare endemic and economically valuable species. While climate and land use are decisive for vegetation composition and thus the species pool, fire disturbance can lead to landscape fragmentation, affecting the provisioning of important ecosystem services such as timber and raw natural resources. We use multi-proxy palaeoecological data with high taxonomic and temporal resolution across an environmental gradient to assess the long-term impact of major climate shifts, land use and fire disturbance on past vegetation openness and plant diversity (evenness and richness). Evenness of taxa is inferred by calculating the probability of interspecific encounter (PIE) of pollen and spores and species richness by palynological richness (PRI). To account for evenness distortions of PRI, we developed a new palaeodiversity measure, which is evenness-detrended palynological richness (DE-PRI). Reconstructed species richness increases from north to south regardless of time, mirroring the biodiversity increase across the gradient from temperate deciduous to subtropical evergreen vegetation. Climatic changes after the end of the last ice age contributed to biodiversity dynamics, usually by promoting species richness and evenness in response to warming. The data reveal that the promotion of diverse open-land ecosystems increased when human disturbance became determinant, while forests became less diverse. Our results imply that the today’s biodiversity has been shaped by anthropogenic forcing over the millennia. Future management strategies aiming at a successful conservation of biodiversity should therefore consider the millennia-lasting role of anthropogenic fire and human activities.
Resumo:
We hypothesized that biodiversity improves ecosystem functioning and services such as nutrient cycling because of increased complementarity. We examined N canopy budgets of 27 Central European forests of varying dominant tree species, stand density, and tree and shrub species diversity (Shannon index) in three study regions by quantifying bulk and fine particulate dry deposition and dissolved below canopy N fluxes. Average regional canopy N retention ranged from 16% to 51%, because of differences in the N status of the ecosystems. Canopy N budgets of coniferous forests differed from deciduous forest which we attribute to differences in biogeochemical N cycling, tree functional traits and canopy surface area. The canopy budgets of N were related to the Shannon index which explained 14% of the variance of the canopy budgets of N, suggesting complementary aboveground N use of trees and diverse understorey vegetation. The relationship between plant diversity and canopy N retention varied among regional site conditions and forest types. Our results suggest that the traditional view of belowground complementarity of nutrient uptake by roots in diverse plant communities can be transferred to foliar uptake in forest canopies.
Resumo:
Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m x 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.
Resumo:
16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.
Resumo:
Forest management is known to influence species diversity of various taxa but inconsistent or even contrasting effects are reported for arthropods. Regional differences in management as well as differences in regional species pools might be responsible for these inconsistencies, but, inter-regional replicated studies that account for regional variability are rare. We investigated the effect of forest type on the abundance, diversity, community structure and composition of two important ground-dwelling beetle families, Carabidae and Staphylinidae, in 149 forest stands distributed over three regions in Germany. In particular we focused on recent forestry history, stand age and dominant tree species, in addition to a number of environmental descriptors. Overall management effects on beetle communities were small and mainly mediated by structural habitat parameters such as the cover of forest canopy or the plant diversity on forest stands. The general response of both beetle taxa to forest management was similar in all regions: abundance and species richness of beetles was higher in older than in younger stands and species richness was lower in unmanaged than in managed stands. The abundance ratio of forest species-to-open habitat species differed between regions, but generally increased from young to old stands, from coniferous to deciduous stands and from managed to unmanaged stands. The response of both beetle families to dominant tree species was variable among regions and staphylinid richness varied in the response to recent forestry history. Our results suggest that current forest management practices change the composition of ground-dwelling beetle communities mainly by favoring generalists and open habitat species. To protect important forest beetle communities and thus the ecosystem functions and services provided by them, we suggest to shelter remaining ancient forests and to develop near-to-nature management strategies by prolonging rotation periods and increasing structural diversity of managed forests. Possible geographic variations in the response of beetle communities need to be considered in conservation-orientated forest management strategies.