226 resultados para past 300 a


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new deep ice core drilling program, TALDICE, has been successfully handled by a European team at Talos Dome, in the Ross Sea sector of East Antarctica, down to 1620 m depth. Using stratigraphic markers and a new inverse method, we produce the first official chronology of the ice core, called TALDICE-1. We show that it notably improves an a priori chronology resulting from a one-dimensional ice flow model. It is in agreement with a posteriori controls of the resulting accumulation rate and thinning function along the core. An absolute uncertainty of only 300 yr is obtained over the course of the last deglaciation. This uncertainty remains lower than 600 yr over Marine Isotope Stage 3, back to 50 kyr BP. The phasing of the TALDICE ice core climate record with respect to the central East Antarctic plateau and Greenland records can thus be determined with a precision allowing for a discussion of the mechanisms at work at sub-millennial time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483–2006 period correlates at 0.80 with June–August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existing Scandinavian tree-ring proxies. Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500 years.