35 resultados para particle physics
Resumo:
ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √sNN = 2.76 TeV are shown using a dataset of approximately 7μb−1 collected at the LHC in 2010. The measurements are performed for charged particles with transversemomenta 0.5 < pT < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the vn coefficients are presented. The elliptic flow, v2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v3 and v4, are determined with two- and four-particle cumulants. Flow harmonics vn measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multiparticle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.
Resumo:
Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in √sNN=2.76 TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb−1. Jets were reconstructed using the anti-kt algorithm with distance parameter values R = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for R=0.4 jets with pjetT>100 GeV. Commensurate minimum pT values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate z values, 0.04≲z≲0.2 and an enhancement in fragment yield for z≲0.04. A smaller, less significant enhancement is observed at large z and large pT in central collisions.
Resumo:
The OPERA experiment, designed to perform the first observation of νμ→ντ oscillations in appearance mode through the detection of the τ leptons produced in ντ charged current interactions, has collected data from 2008 to 2012. In the present paper, the procedure developed to detect τ particle decays, occurring over distances of the order of 1 mm from the neutrino interaction point, is described in detail. The results of its application to the search for charmed hadrons are then presented as a validation of the methods for ντ appearance detection.
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
Resumo:
The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.