40 resultados para optimization of the fracture parameters
Resumo:
OBJECTIVE: To report clinical evaluation of the clamp rod internal fixator 4.5/5.5 (CRIF 4.5/5.5) in bovine long-bone fracture repair. STUDY DESIGN: Retrospective study. ANIMALS: Cattle (n=22) with long-bone fractures. METHODS: Records for cattle with long-bone fractures repaired between 1999 and 2004 with CRIF 4.5/5.5 were reviewed. Quality of fracture repair, fracture healing, and clinical outcome were investigated by means of clinical examination, medical records, radiographs, and telephone questionnaire. RESULTS: Successful long-term outcome was achieved in 18 cattle (82%); 4 were euthanatized 2-14 days postoperatively because of fracture breakdowns. Two cattle had movement of clamps on the rod. Moderate to severe callus formation was evident in 11 cattle 6 months postoperatively. CONCLUSIONS: Movement of clamps on the rod was recognized as implant failure unique to the CRIF. This occurred in cattle with poor fracture stability because of an extensive cortical defect. The CRIF system may not be ideal to treat metacarpal/metatarsal fractures because its voluminous size makes skin closure difficult, thereby increasing the risk of postoperative infections. CLINICAL RELEVANCE: CRIF cannot be recommended for repair of complicated long-bone fractures in cattle.
Resumo:
During osteoporosis induction in sheep, side effects of the steroids were observed in previous studies. The aim of this study was to improve the induction regimen consisting of ovariectomy, calcium/vitamin D- restricted diet and methylprednisolone (-MP)- medication with respect to the bone metabolism and to reduce the adverse side effects. Thirty-six ewes (age 6.5 +/- 0.6 years) were divided into four MP-administration groups (n = 9) with a total dose of 1800 mg MP: group 1: 20 mg/day, group 2: 60 mg/every third day, group 3: 3 x 500 mg and 1 x 300 mg at intervals of three weeks, group 4: weekly administration, starting at 70 mg and weekly reduction by 10 mg. After double-labelling with Calcein Green and Xylenol Orange, bone biopsy specimens were taken from the iliac crest (IC) at the beginning and four weeks after the last MP injection, and additionally from the vertebral body (VB) at the end of the experiment. Bone samples were processed into stained and fluorescent sections, static and dynamic measurements were performed. There were no significant differences for static parameters between the groups initially. The bone perimeter and the bone area values were significantly higher in the VB than in the IC (Pm: 26%, p < 0.0001, Ar: 11%, p < 0.0166). A significant decrease (20%) of the bone area was observed after corticosteroid-induced osteoporosis (p < 0.0004). For the dynamic parameters, no significant difference between the groups was found. Presence of Calcein Green and Xylenol Orange labels were noted in 50% of the biopsies in the IC, 100% in the VB. Group 3 showed the lowest prevalence of adverse side effects. The bone metabolism changes were observed in all four groups, and the VB bone metabolism was higher when compared to the IC. In conclusion, when using equal amounts of steroids adverse side effects can be reduced by decreasing the number of administrations without reducing the effect regarding corticosteroid-induced osteoporosis. This information is useful to reduce the discomfort of the animals in this sheep model of corticosteroid-induced osteoporosis.
Resumo:
The GH-IGF axis has profound effects on the local and systemic regulation of bone metabolism and may be important for quality of fracture healing. To test the hypothesis that deficiency of the GH/IGF axis may play a role in the pathogenesis of fracture non-union we investigated whether alterations of serum concentrations of the GH-IGF axis could be related to failed fracture healing compared to timely fracture healing in trauma patients. Serum probes were prospectively collected from 186 patients with surgical treatment of long bone fractures up to 6 months after surgery. Samples from 14 patients with atrophic type of non-union have been compared to 14 matched patients with normal bone healing. Postoperative time courses of serum concentrations have been analyzed using commercially available chemiluminescence sandwich assays (GH), fully automated assay systems (IGF-I, IGFBP-3) or sandwich immunometric assays (ALS). Comparison between both collectives revealed significantly lower serum concentrations of GH dependent ALS during early (1st week after surgery) and of both IGFBP-3 and ALS during late stages of fracture healing (6 and 8 weeks after surgery) in non-union patients, coinciding clinically with failed fracture healing. Tendentially lower serum levels of IGF-I in the non-union group over the entire investigation period were statistically not significant. We have been able to show time courses of serum concentrations of the GH/IGF-I axis during normal and failed fracture healing in humans. An impairment of the GH/IGF-I axis might be involved in the biochemical mechanisms determining delayed or failed fracture healing.
Resumo:
We present a case of a pathologic humerus fracture in a patient with the initial diagnosis of Gaucher's disease, which is the most frequent form of lipidosis transmitted as an autosomal recessive trait. It often results in orthopaedic complications with pain, osteonecrosis, fractures and joint infractions. If there is cause for suspicion, beta-glucocerebrosidase in white blood cells should be measured because of the important consequences for treatment. Therapy with a modified enzyme is effective in managing the disease.
Resumo:
The impact of the systematic variation of either DeltapK(a) or mobility of 140 biprotic carrier ampholytes on the conductivity profile of a pH 3-10 gradient was studied by dynamic computer simulation. A configuration with the greatest DeltapK(a) in the pH 6-7 range and uniform mobilities produced a conductivity profile consistent with that which is experimentally observed. A similar result was observed when the neutral (pI = 7) ampholyte is assigned the lowest mobility and mobilities of the other carriers are systematically increased as their pI's recede from 7. When equal DeltapK(a) values and mobilities are assigned to all ampholytes a conductivity plateau in the pH 5-9 region is produced which does not reflect what is seen experimentally. The variation in DeltapK(a) values is considered to most accurately reflect the electrochemical parameters of commercially available mixtures of carrier ampholytes. Simulations with unequal mobilities of the cationic and anionic species of the carrier ampholytes show either cathodic (greater mobility of the cationic species) or anodic (greater mobility of the anionic species) drifts of the pH gradient. The simulated cationic drifts compare well to those observed experimentally in a capillary in which the focusing of three dyes was followed by whole column optical imaging. The cathodic drift flattens the acidic portion of the gradient and steepens the basic part. This phenomenon is an additional argument against the notion that focused zones of carrier ampholytes have no electrophoretic flux.
Resumo:
Vertebral cement augmentation can restore the stiffness and strength of a fractured vertebra and relieve chronic pain. Previous finite element analysis, biomechanical tests and clinical studies have indirectly associated new adjacent vertebral fractures following augmentation to altered loading. The aim of this repeated measures in situ biomechanical study was to determine the changes in the adjacent and augmented endplate deformation following cement augmentation of human cadaveric functional spine units (FSU) using micro-computed tomography (micro-CT). The surrounding soft tissue and posterior elements of 22 cadaveric human FSU were removed. FSU were assigned to two groups, control (n = 8) (loaded on day 1 and day 2) and augmented (n = 14) (loaded on day 1, augmented 20% cement fill, and loaded on day 2). The augmented group was further subdivided into a prophylactic augmentation group (n = 9), and vertebrae which spontaneously fractured during loading on day 1 (n = 5). The FSU were axially loaded (200, 1,000, 1,500-2,000 N) within a custom made radiolucent, saline filled loading device. At each loading step, FSUs were scanned using the micro-CT. Endplate heights were determined using custom software. No significant increase in endplate deformation following cement augmentation was noted for the adjacent endplate (P > 0.05). The deformation of the augmented endplate was significantly reduced following cement augmentation for both the prophylactic and fracture group (P < 0.05, P < 0.01, respectively). Endplate deformation of the controls showed no statistically significant differences between loading on day 1 and day 2. A linear relationship was noted between the applied compressive load and endplate deflection (R (2) = 0.58). Evidence of significant endplate deformation differences between unaugmented and augmented FSU, while evident for the augmented endplate, was not present for the adjacent endplate. This non-invasive micro-CT method may also be useful to investigate endplate failure, and parameters that predict vertebral failure.