50 resultados para non-contact laser scanning confocal microscopy
Resumo:
This study evaluated (1) the micromorphology by scanning electron microscopy (SEM) and (2) the adhesive performance by microtensile bond strength (μTBS) of diamond bur-treated dentin compared to Er:YAG laser-treated dentin of human primary teeth. (1) For qualitative SEM evaluation, dentin of 18 second primary molars (n = 3/method) was treated with either diamond bur as a control (group 1a: 40 μm diamond bur only (clinical situation); group 1b: grinding + 40 μm diamond bur) or with Er:YAG laser (group 2a (clinical situation, manufacturer's settings): 200 mJ/25 Hz (5 W) + 100 mJ/35 Hz (3.5 W) laser only; group 2b (experimental setting "high"): grinding + 400 mJ/20 Hz (8 W); group 2c (manufacturer's setting "finishing"): grinding + 100 mJ/35 Hz (3.5 W); group 2d (experimental setting "low"): grinding + 50 mJ/35 Hz (1.75 W)). (2) For evaluation of adhesive performance, 64 second primary molars were divided into four groups and treated as described for group 1b and groups 2b/c/d (n = 16/method), and μTBS of Clearfil SE/Clearfil Majesty Esthetic to dentin was measured. The SEM micrographs were qualitatively analyzed. The μTBS values were compared with a Kruskal-Wallis test. The significance level was set at α = 0.05. SEM micrographs showed the typical micromorphologies with a smear layer for the diamond bur groups and open dentin tubules for all laser-treated groups. However, in group 2d, the laser beam had insufficiently irradiated the dentin area, rendering the underlying ground surface partly visible. There were no statistically significant differences between μTBS values of the four groups (p = 0.394). This suggests that Er:YAG laser treatment of dentin of primary molars provides bond strengths similar to those obtained following diamond bur treatment.
Resumo:
This study aimed at testing how active and inactive enamel caries lesions differ by their degree of resin infiltration, and whether the choice of acid pretreatment plays a crucial role. Four examiners assessed 104 human molars and premolars with noncavitated enamel lesions and classified them as 'active' or 'inactive' using the Nyvad criteria. Forty-five teeth were included in this study after independent unanimous lesion activity assessment. Lesions were cut perpendicularly into 2 halves. Each half lesion was pretreated with either 15% hydrochloric acid or 35% phosphoric acid. The lesions were infiltrated after staining with rhodamine isothiocyanate. Thin sections of 100 µm were prepared and the specimens were bleached with 30% hydrogen peroxide. The specimens were then counterstained with sodium fluorescein, subjected to confocal laser scanning microscopy and analyzed quantitatively. Outcome parameters were maximum and average infiltration depths as well as relative penetration depths and areas. In active lesions no significant difference of percentage maximum penetration depth and percentage average penetration depth between lesions pretreated with hydrochloric or phosphoric acid could be observed. In inactive lesions, however, phosphoric acid pretreatment resulted in significantly lower penetration compared to hydrochloric acid pretreatment. Surface conditioning with hydrochloric acid led to similar infiltration results in active and inactive lesions. Moreover, inactive lesions showed greater variability in all assessed infiltration parameters than did active lesions. In conclusion, caries lesion activity and acid pretreatment both influenced the infiltration. The use of phosphoric acid to increase permeability of the surface layer of active lesions should be further explored.
Resumo:
We describe an angiotensin (Ang) II-containing innervation of the kidney. Cryosections of rat, pig and human kidneys were investigated for the presence of Ang II-containing nerve fibers using a mouse monoclonal antibody against Ang II (4B3). Co-staining was performed with antibodies against synaptophysin, tyrosine 3-hydroxylase, and dopamine beta-hydroxylase to detect catecholaminergic efferent fibers and against calcitonin gene-related peptide to detect sensory fibers. Tagged secondary antibodies and confocal light or laser scanning microscopy were used for immunofluorescence detection. Ang II-containing nerve fibers were densely present in the renal pelvis, the subepithelial layer of the urothelium, the arterial nervous plexus, and the peritubular interstitium of the cortex and outer medulla. They were infrequent in central veins and the renal capsule and absent within glomeruli and the renal papilla. Ang II-positive fibers represented phenotypic subgroups of catecholaminergic postganglionic or sensory fibers with different morphology and intrarenal distribution compared to their Ang II-negative counterparts. The Ang II-positive postganglionic fibers were thicker, produced typically fusiform varicosities and preferentially innervated the outer medulla and periglomerular arterioles. Ang II-negative sensory fibers were highly varicose, prevailing in the pelvis and scarce in the renal periphery compared to the rarely varicose Ang II-positive fibers. Neurons within renal microganglia displayed angiotensinergic, catecholaminergic, or combined phenotypes. Our results suggest that autonomic fibers may be an independent source of intrarenal Ang II acting as a neuropeptide co-transmitter or neuromodulator. The angiotensinergic renal innervation may play a distinct role in the neuronal control of renal sodium reabsorption, vasomotion and renin secretion.
Resumo:
As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.
Resumo:
This in vitro study aimed to assess the speed and caries removal effectiveness of four different new and conventional dentine excavation methods. Eighty deciduous molars were assigned to four groups. Teeth were sectioned longitudinally through the lesion centre. Images of one half per tooth were captured by light microscope and confocal laser scanning microscopy (CLSM) to assess the caries extension. The halves were then reassembled and caries removed using round carbide bur (group 1), Er:YAG laser (group 2), hand excavator (group 3) and a polymer bur (group 4). The time needed for the whole excavation in each tooth was registered. After excavation, the halves were photographed by light microscope. Caries extension obtained from CLSM images were superimposed on the post-excavation images, allowing comparison between caries extension and removal. The regions where caries and preparation limits coincided, as well as the areas of over- and underpreparation, were measured. Steel bur was the fastest method, followed by the polymer bur, hand excavator and laser. Steel bur exhibited also the largest overpreparation area, followed by laser, hand excavator and polymer bur. The largest underpreparation area was found using polymer bur, followed by laser, hand excavator and steel bur. Hand excavator presented the longest coincidence line, followed by polymer and steel burs and laser. Overall, hand excavator seemed to be the most suitable method for carious dentine excavation in deciduous teeth, combining good excavation time with effective caries removal.
Resumo:
BACKGROUND: Early exposure of infants and long-term immunity suggest that colonization with Moraxella catarrhalis is more frequent than is determined by routine culture. We characterized a reservoir of M. catarrhalis in pharyngeal lymphoid tissue. METHODS: Tissue from 40 patients (median age, 7.1 years) undergoing elective tonsillectomy and/or adenoidectomy was analyzed for the presence of M. catarrhalis by culture, real-time DNA and RNA polymerase chain reaction (PCR), immunohistochemical analysis (IHC), and fluorescent in situ hybridization (FISH). Histologic sections were double stained for M. catarrhalis and immune cell markers, to characterize the tissue distribution of the organism. Intracellular bacteria were identified using confocal laser scanning microscopy (CLSM). RESULTS: Twenty-nine (91%) of 32 adenoids and 17 (85%) of 20 tonsils were colonized with M. catarrhalis. Detection rates for culture, DNA PCR, RNA PCR, IHC, and FISH were 7 (13%) of 52, 10 (19%) of 52, 21 (41%) of 51, 30 (61%) of 49, and 42 (88%) of 48, respectively (P<.001). Histologic analysis identified M. catarrhalis in crypts, intraepithelially, subepithelially, and (using CLSM) intracellularly. M. catarrhalis colocalized with macrophages and B cells in lymphoid follicles. CONCLUSIONS: Colonization by M. catarrhalis is more frequent than is determined by surface culture, because the organism resides both within and beneath the epithelium and invades host cells.
Resumo:
In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.
Resumo:
The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50 microm), test group 100 (TG100; gap, 100 microm), test group 250 (TG250; gap, 250 microm) and a control group (CG; gap, 250 microm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present setting.
Resumo:
The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging.
Resumo:
Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM.
Resumo:
We carried out a comprehensive study of Au(1 1 1) oxidation–reduction in the presence of (hydrogen-) sulfate ions on ideally smooth and stepped Au(S)[n(1 1 1)-(1 1 1)] single crystal electrodes using cyclic voltammetry, in situ scanning tunneling microscopy (STM) and vibration spectroscopy, such as surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Surface structure changes and the role of surface defects in the potential regions of double layer charging and gold oxidation/reduction are discussed based on cyclic voltammetry and in situ STM data. SEIRAS and SHINERS provide complementary information on the chemical nature of adsorbates. In particular, the potential-dependent formation and stability ranges of adsorbed sulfate, hydroxide-species and of gold surface oxide could be resolved in detail. Based on our experimental observations, we proposed new and extended mechanisms of gold surface oxidation and reduction in 1.0 M H2SO4 and 1.0 M Na2SO4.
Resumo:
The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multi-species biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002 - 512 µg ml-1) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken by using confocal laser scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, the lowest MBECs were always found for moxifloxacin (2-8 µg ml-1). MBECs against the multi-species biofilms were 128 µg ml-1, >512 µg ml-1 and >512 µg ml-1 for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.
Resumo:
The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event.
Resumo:
BACKGROUND: Eczematous skin lesions of atopic dermatitis (AD) as well as allergic and irritant contact dermatitis (ACD, ICD) are characterized by the same typical clinical signs, although due to different causes. In both AD and ACD, the presence of T helper 17 cells which play an important role in host defense, has been reported. Furthermore, IL-17 is involved in tissue repair and remodeling. This study aimed to investigate IL-17 expression in acute eczematous skin lesions and correlate it with markers of remodeling in AD, ACD, and ICD. METHODS: Skin specimens were taken from positive patch test reactions to aeroallergens, contact allergens, and irritants at days 2, 3, and 4. Inflammatory cells as well as the expression of cytokines and extracellular matrix proteins were evaluated by immunofluorescence staining and confocal microscopy. RESULTS: Allergic contact dermatitis and ICD were characterized by IFN-γ expression, whereas in AD lesions, IL-13 expression and high numbers of eosinophils were the prominent phenotype. Expression of IL-17, but also IL-21 and IL-22, was observed in all eczema subtypes. The number of IL-22+ T cells correlated with the number of eosinophils. Markers of remodeling such as MMP-9, procollagen-3, and tenascin C were observed in all acute eczematous lesions, while a correlation of IL-17+ T cell numbers with tenascin C-expressing cells and MMP-9+ eosinophils was apparent. CONCLUSION: The expression of IL-17 and related cytokines, such as IL-22, was demonstrated in acute eczematous lesions independent of their pathogenesis. Our results suggest a potential role for IL-17 in remodeling of the skin.
Resumo:
Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4′-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of [similar]70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of [similar]140 μm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into −P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of [similar]20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (DA), (AA), (DD) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.