97 resultados para non-canonical signaling pathways


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rho-family GTPases are molecular switches that transmit extracellular cues to intracellular signaling pathways. Their regulation is likely to be highly regulated in space and in time, but most of what is known about Rho-family GTPase signaling has been derived from techniques that do not resolve these dimensions. New imaging technologies now allow the visualization of Rho GTPase signaling with high spatio-temporal resolution. This has led to insights that significantly extend classic models and call for a novel conceptual framework. These approaches clearly show three things. First, Rho GTPase signaling dynamics occur on micrometer length scales and subminute timescales. Second, multiple subcellular pools of one given Rho GTPase can operate simultaneously in time and space to regulate a wide variety of morphogenetic events (e.g. leading-edge membrane protrusion, tail retraction, membrane ruffling). These different Rho GTPase subcellular pools might be described as 'spatio-temporal signaling modules' and might involve the specific interaction of one GTPase with different guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and effectors. Third, complex spatio-temporal signaling programs that involve precise crosstalk between multiple Rho GTPase signaling modules regulate specific morphogenetic events. The next challenge is to decipher the molecular circuitry underlying this complex spatio-temporal modularity to produce integrated models of Rho GTPase signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive immune responses are characterized by substantial restructuring of secondary lymphoid organs. The molecular and cellular factors responsible for virus-induced lymphoid remodeling are not well known to date. Here we applied optical projection tomography, a mesoscopic imaging technique, for a global analysis of the entire 3-dimensional structure of mouse peripheral lymph nodes (PLNs), focusing on B-cell areas and high endothelial venule (HEV) networks. Structural homeostasis of PLNs was characterized by a strict correlation between total PLN volume, B-cell volume, B-cell follicle number, and HEV length. After infection with lymphocytic choriomeningitis virus, we observed a substantial, lymphotoxin (LT) beta-receptor-dependent reorganization of the PLN microarchitecture, in which an initial B-cell influx was followed by 3-fold increases in PLN volume and HEV network length on day 8 after infection. Adoptive transfer experiments revealed that virus-induced PLN and HEV network remodeling required LTalpha(1)beta(2)-expressing B cells, whereas the inhibition of vascular endothelial growth factor-A signaling pathways had no significant effect on PLN expansion. In summary, lymphocytic choriomeningitis virus-induced PLN growth depends on a vascular endothelial growth factor-A-independent, LT- and B cell-dependent morphogenic pathway, as revealed by an in-depth mesoscopic analysis of the global PLN structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence and prevalence of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have increased in the past 20 years. GEP-NETs are heterogeneous tumors, in terms of clinical and biological features, that originate from the pancreas or the intestinal tract. Some GEP-NETs grow very slowly, some grow rapidly and do not cause symptoms, and others cause hormone hypersecretion and associated symptoms. Most GEP-NETs overexpress receptors for somatostatins. Somatostatins inhibit the release of many hormones and other secretory proteins; their effects are mediated by G protein-coupled receptors that are expressed in a tissue-specific manner. Most GEP-NETs overexpress the somatostatin receptor SSTR2; somatostatin analogues are the best therapeutic option for functional neuroendocrine tumors because they reduce hormone-related symptoms and also have antitumor effects. Long-acting formulations of somatostatin analogues stabilize tumor growth over long periods. The development of radioactive analogues for imaging and peptide receptor radiotherapy has improved the management of GEP-NETs. Peptide receptor radiotherapy has significant antitumor effects, increasing overall survival times of patients with tumors that express a high density of SSTRs, particularly SSTR2 and SSTR5. The multi-receptor somatostatin analogue SOM230 (pasireotide) and chimeric molecules that bind SSTR2 and the dopamine receptor D2 are also being developed to treat patients with GEP-NETs. Combinations of radioactive labeled and unlabeled somatostatin analogues and therapeutics that inhibit other signaling pathways, such as mammalian target of rapamycin (mTOR) and vascular endothelial growth factor, might be the most effective therapeutics for GEP-NETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Src tyrosine kinases regulate multiple genetic and signaling pathways involved in the proliferation, survival, angiogenesis, invasion, and migration of various types of cancer cells They are frequently expressed and activated in many cancer types, including lung cancer. Several Src inhibitors, including dasatinib, saracatinib, bosutinib, and KX2-391, are currently being investigated in clinical trials. Preliminary results of the use of single-agent Src inhibitors in unselected patients with lung cancer show that these inhibitors have a favorable safety profile and anticancer activity. Their combination with cytotoxic chemotherapy, other targeted therapy, and radiation therapy is currently being explored. In this review, we summarize the rationale for and the current status of Src inhibitor development and discuss future directions based on emerging preclinical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T-cells specific for foreign (e.g., viral) antigens can give rise to strong protective immune responses, whereas self/tumor antigen-specific T-cells are thought to be less powerful. However, synthetic T-cell vaccines composed of Melan-A/MART-1 peptide, CpG and IFA can induce high frequencies of tumor-specific CD8 T-cells in PBMC of melanoma patients. Here we analyzed the functionality of these T-cells directly ex vivo, by multiparameter flow cytometry. The production of multiple cytokines (IFNγ, TNFα, IL-2) and upregulation of LAMP-1 (CD107a) by tumor (Melan-A/MART-1) specific T-cells was comparable to virus (EBV-BMLF1) specific CD8 T-cells. Furthermore, phosphorylation of STAT1, STAT5 and ERK1/2, and expression of CD3 zeta chain were similar in tumor- and virus-specific T-cells, demonstrating functional signaling pathways. Interestingly, high frequencies of functionally competent T-cells were induced irrespective of patient's age or gender. Finally, CD8 T-cell function correlated with disease-free survival. However, this result is preliminary since the study was a Phase I clinical trial. We conclude that human tumor-specific CD8 T-cells can reach functional competence in vivo, encouraging further development and Phase III trials assessing the clinical efficacy of robust vaccination strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morbidity and mortality of myocardial infarction remains significant with resulting left ventricular function presenting as a major determinant of clinical outcome. Protecting the myocardium against ischemia reperfusion injury has become a major therapeutic goal and the identification of key signaling pathways has paved the way for various interventions, but until now with disappointing results. This article describes the recently discovered new role of G-protein-coupled receptor kinase-2 (GRK2), which is known to critically influence the development and progression of heart failure, in acute myocardial injury. This article focuses on potential applications of the GRK2 peptide inhibitor βARKct in ischemic myocardial injury, the use of GRK2 as a biomarker in acute myocardial infarction and discusses the challenges of translating GRK2 inhibition as a cardioprotective strategy to a possible future clinical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinases (PI3Ks) are key molecules in the signal transduction pathways initiated by the binding of extracellular signals to their cell surface receptors. The PI3K family of enzymes comprises eight catalytic isoforms subdivided into three classes and control a variety of cellular processes including proliferation, growth, apoptosis, migration and metabolism. Deregulation of the PI3K pathway has been extensively investigated in connection to cancer, but is also involved in other commonly occurring diseases such as chronic inflammation, autoimmunity, allergy, atherosclerosis, cardiovascular and metabolic diseases. The fact that the PI3K pathway is deregulated in a large number of human diseases, and its importance for different cellular responses, makes it an attractive drug target. Pharmacological PI3K inhibitors have played a very important role in studying cellular responses involving these enzymes. Currently, a wide range of selective PI3K inhibitors have been tested in preclinical studies and some have entered clinical trials in oncology. However, due to the complexity of PI3K signaling pathways, developing an effective anti-cancer therapy may be difficult. The biggest challenge in curing cancer patients with various signaling pathway abnormalities is to target multiple components of different signal transduction pathways with mechanism-based combinatorial treatments. In this article we will give an overview of the complex role of PI3K isoforms in human diseases and discuss their potential as drug targets. In addition, we will describe the drugs currently used in clinical trials, as well as promising emerging candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quassinoids are a group of compounds extracted from plants of the Simaroubaceae family, which have been used for many years in folk medicine. These molecules gained notoriety after the initial discovery of the anti-leukemic activity of one member, bruceantin, in 1975. Currently over 150 quassinoids have been isolated and classified based on their chemical structures and biological properties investigated in vitro and in vivo. Many molecules display a wide range of inhibitory effects, including anti-inflammatory, anti-viral, anti-malarial and anti-proliferative effects on various tumor cell types. Although often the exact mechanism of action of the single agents remains unclear, some agents have been shown to affect protein synthesis in general, or specifically HIF-1α and MYC, membrane polarization and the apoptotic machinery. Considering that future research into chemical modifications is likely to generate more active and less toxic derivatives of natural quassinoids, this family represents a powerful source of promising small molecules targeting key prosurvival signaling pathways relevant for diverse pathologies. Here, we review available knowledge of functionality and possible applications of quassinoids and quassinoid derivatives, spanning traditional use to the potential impact on modern medicine as cancer therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of the study was to evaluate the biological effects of water eluents from polycarbonate based esthetic orthodontic brackets. METHODS: The composite polycarbonate brackets tested were Silkon Plus (SL, fiber-glass-reinforced), Elan ME (EL, ceramic particle-reinforced) and Elegance (EG, fiber-glass-reinforced). An unfilled polyoxymethylene bracket (Brilliant, BR) was used as control. The brackets' composition was analyzed by ATR-FTIR spectrometry. The cytotoxicity and estrogenicity of the eluents obtained after 3months storage of the brackets in water (37°C) were investigated in murine fibroblasts (NIH 3T3), breast (MCF-7) and cervical cancer (CCl-2/Hela) cell lines. RESULTS: SL and EG were based on aromatic-polycarbonate matrix, whereas EL consisted of an aromatic polycarbonate-polyethylene terepthalate copolymer. A significant induction of cell death and a concurrent decrease in cell proliferation was noted in the EG eluent-treated cells. Moreover, EG eluent significantly reduced the levels of the estrogen signaling associated gene pS2, specifically in MCF7 cells, suggesting that cell death induced by this material is associated with downregulation of estrogen signaling pathways. Even though oxidative stress mechanisms were equally activated by all eluents, the EG eluents induced expression of apoptosis inducing factor (AIF) and reduced Bcl-xL protein levels. SIGNIFICANCE: Some polycarbonate-based composite brackets when exposed to water release substances than activate mitochondrial apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death (PCD) plays a central role in the regulation of granulocytes that are key effector cells of the innate immune system. Granulocytes are produced in high amounts in the bone marrow. A safe elimination of granulocytes by cell death (apoptosis) is essential to maintain the numbers of these cells balanced. In many acute and chronic inflammatory diseases, delayed apoptosis is one mechanism that contributes to accumulation of neutrophil and eosinophil granulocytes at the site of inflammation. On the other hand, a safe elimination of granulocytes by cell death is required to avoid unwanted tissue damage for instance by secretion of toxic products from these cells. Recent evidence shows that humans produce an array of naturally occurring autoantibodies (NAbs) with the capacity to regulate granulocyte death, including agonistic and antagonistic NAbs that bind to the receptors Fas, Siglec-8, and Siglec-9. Together with other factors, these various NAbs exhibit different properties in terms of the form of cell death they induce, the molecular signaling pathways they engage, as well as the efficacy or potency by which they induce cell death. Moreover, several regulatory mechanisms seem to exist that control their biological activity. Novel insights support the concept of granulocyte death regulation by NAbs, which might have important implications for our understanding of the pathogenesis and treatment of inflammatory diseases, including many autoimmune and allergic disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.