64 resultados para native legumes
Resumo:
Human activities, such intentional and unintentional transplantations, and habitat alterations including the establishment of migration corridors, generate increasing opportunities for formerly allopatric taxa to meet and to hybridize. There is indeed increasing evidence that these introduced plant and animal taxa (including crop plants and domesticated animal taxa) frequently hybridize with native relatives and with other introduced taxa, leading to a growing concern that these hybridizations may compromise the genetic integrity of native taxa to the point of causing extinctions (Abbott 1992; Rhymer and Simberloff 1996; Levin et al. 1996; Ellstrand and Schierenbeck 2000; Vilà et al. 2000). A decade ago, Rhymer and Simberloff (1996) stated in their review on this topic that the known cases are probably just the tip of the iceberg.Using the search term ‘hybridization and introgression’, the Web of Science database yields a total of 1,178 research articles, of which 935 (or 80 %) have been published after 1995 (Fig. 16.1). Indeed, the evidence for natural and man-induced hybridization and introgression appears to have increased exponentially these last few years.
Resumo:
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians-signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.
Resumo:
Animal and early clinical studies of gene therapy for tissue ischaemia suggested that this approach might provide benefit to patients with coronary artery disease not amenable to traditional revascularization. This enthusiasm was then tempered by the subsequent disappointing results of randomized clinical trials and led researchers to develop strategies using progenitor cells as an alternative to improve collateral function. However, the recent publication of several randomized clinical trials reporting either negative or weakly positive results using this approach have led to questions regarding its effectiveness. There are several factors that need to be considered in explaining the discordance between the positive studies of such treatments in animals and the disappointing results seen in randomized patient trials. Aside from the practical issues of arteriogenic therapies, such as effective delivery, vascular remodelling is an extraordinarily complex process, and the administration of a single agent or cell in the hope that it would lead to lasting physiological effects may be far too simplistic an approach. In addition, however, evidence now suggests that many of the traditional cardiovascular risk factors-such as age and hypercholesterolemia-may impair the host response not only to ischaemia but, critically, also to treatment as well. This review discusses the evidence and mechanisms for these observations and highlights future directions that might be taken in an effort to provide more effective therapies.
Resumo:
The objective of modern transmission electron microscopy (TEM) in life science is to observe biological structures in a state as close as possible to the living organism. TEM samples have to be thin and to be examined in vacuum; therefore only solid samples can be investigated. The most common and popular way to prepare samples for TEM is to subject them to chemical fixation, staining, dehydration, and embedding in a resin (all of these steps introduce considerable artifacts) before investigation. An alternative is to immobilize samples by cooling. High pressure freezing is so far the only approach to vitrify (water solidification without ice crystal formation) bulk biological samples of about 200 micrometer thick. This method leads to an improved ultrastructural preservation. After high pressure freezing, samples have to be subjected to follow-up procedure, such as freeze-substitution and embedding. The samples can also be sectioned into frozen hydrated sections and analyzed in a cryo-TEM. Also for immunocytochemistry, high pressure freezing is a good and practicable way.
Resumo:
Why some invasive plant species transmogrify from weak competitors at home to strong competitors abroad remains one of the most elusive questions in ecology. Some evidence suggests that disproportionately high densities of some invaders are due to the release of biochemicals that are novel, and therefore harmful, to naive organisms in their new range. So far, such evidence has been restricted to the direct phytotoxic effects of plants on other plants. Here we found that one of North America's most aggressive invaders of undisturbed forest understories, Alliaria petiolata (garlic mustard) and a plant that inhibits mycorrhizal fungal mutualists of North American native plants, has far stronger inhibitory effects on mycorrhizas in invaded North American soils than on mycorrhizas in European soils where A. petiolata is native. This antifungal effect appears to be due to specific flavonoid fractions in A. petiolata extracts. Furthermore, we found that suppression of North American mycorrhizal fungi by A. petiolata corresponds with severe inhibition of North American plant species that rely on these fungi, whereas congeneric European plants are weakly affected. These results indicate that phytochemicals, benign to resistant mycorrhizal symbionts in the home range, may be lethal to naive native mutualists in the introduced range and indirectly suppress the plants that rely on them.
Resumo:
Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits—fine-tuned by environmental factors—determine success or failure of alien and native plants in temperate grasslands.
Resumo:
1. When entomophilous plants are introduced to a new region, they may leave behind their usual pollinators. In particular, plant species with specialized pollination may then be less likely to establish and spread (i.e. become invasive). Moreover, other reproductive characteristics such as self-compatibility and flowering duration may also affect invasion success. 2. Here, we specifically asked whether plant species' specialization towards pollinator species and families, respectively, as measured in the native range, self-compatibility, flowering duration and their interactions are related to the degree of invasion (i.e. a measure of regional abundance) in non-native regions. 3. We used plant–pollinator interaction data from 119 German grassland sites to calculate unbiased indices of plant specialization towards pollinator species and families for 118 European plant species. We related these specialization indices, flowering duration, self-compatibility and their interactions to the degree of invasion of each species in seven large countries on four non-Eurasian continents. 4. In all models, plant species with long flowering durations had the highest degree of invasion. The best model included the specialization index based on pollinator species instead of the one based on pollinator families. Specialization towards pollinator species had a marginally significant positive effect on the degree of invasion in non-native regions for self-compatible, but not for self-incompatible species. 5. Synthesis. We showed that long flowering duration is related to the degree of invasion in other parts of the world, and a trend that pollinator generalization in the native range may interact with self-compatibility in determining the degree of invasion. Therefore, we conclude that such reproductive characteristics should be considered in risk assessment and management of introduced plant species.
Gastropod Seed Dispersal: An Invasive Slug Destroys Far More Seeds in Its Gut than Native Gastropods
Resumo:
Seed dispersal is one of the most important mechanisms shaping biodiversity, and animals are one of the key dispersal vectors. Animal seed dispersal can directly or indirectly be altered by invasive organisms through the establishment of new or the disruption of existing seed dispersal interactions. So far it is known for a few gastropod species that they ingest and defecate viable plant seeds and consequently act as seed dispersers, referred to as gastropodochory. In a multi-species experiment, consisting of five different plant species and four different gastropod species, we tested with a fully crossed design whether gastropodochory is a general mechanism across native gastropod species, and whether it is altered by the invasive alien slug species Arion lusitanicus. Specifically, we hypothesized that a) native gastropod species consume the seeds from all tested plant species in equal numbers (have no preference), b) the voracious invasive alien slug A. lusitanicus – similarly to its herbivore behaviour – consumes a higher amount of seeds than native gastropods, and that c) seed viability is equal among different gastropod species after gut passage. As expected all tested gastropod species consumed all tested plant species. Against our expectation there was a difference in the amount of consumed seeds, with the largest and native mollusk Helix pomatia consuming most seeds, followed by the invasive slug and the other gastropods. Seed damage and germination rates did not differ after gut passage through different native species, but seed damage was significantly higher after gut passage through the invasive slug A. lusitanicus, and their germination rates were significantly reduced.
Optical pen-size reflectometer for monitoring of early dental erosion in native and polished enamels
Resumo:
Application of the specular reflection intensity was previously reported for the quantification of early dental erosion. Further development of the technique and assembly of the miniaturized pen-size instrument are described. The optical system was adjusted to fit into a handy device which could potentially access different positions in the oral cavity. The assembled instrument could successfully detect early erosion progression in both polished (n=70) and native (n=20) human enamels. Different severities of enamel erosion were induced by varying incubation time of polished enamel in 1% citric acid (pH=3.60, 0.5 to 10 min), while the native incisors were treated in the commercial orange juice (Tropicana Pure Premium®, pH=3.85, 10 to 60 min). The instrument provided a good differentiation between various severities of the erosion in vitro. The size of the measurement spot affected the erosion monitoring in native enamel (human incisors). The erosion measurement in the 0.7-mm (diameter) cervical spots showed systematically lower reflection intensities compared with the analysis of central and incisal small spots. The application of larger spot areas (2.3 mm) for the erosion monitoring revealed no effect (p>0.05) of the spot position on the reflection signal. High variation of the teeth susceptibility toward in vitro erosion was detected in native enamel.
Resumo:
The majority of plant species rely, at least partly, on animals for pollination. Our knowledge on whether pollinator visitation differs between native and alien plant species, and between invasive and non-invasive alien species is still limited. Additionally, because numerous invasive plant species are escapees from horticulture, the transition from human-assisted occurrence in urbanized habitats to unassisted persistence and spread in (semi-)natural habitats requires study. To address whether pollinator visitation differs between native, invasive alien and non-invasive alien species, we did pollinator observations for a total of 17 plant species representing five plant families. To test whether pollinator visitation to the three groups of species during the initial stage of invasion depends on habitat type, we did the study in three urbanized habitats and three semi-natural grasslands, using single potted plants. Native plants had more but smaller flower units than alien plants, and invasive alien plants had more but smaller flowers than non-invasive alien plants. After accounting for these differences in floral display, pollinator visitation was higher for native than for alien plant species, but did not differ between invasive and non-invasive alien plant species. Pollinator visitation was on average higher in semi-natural than in urbanized habitats, irrespective of origin or status of the plant species. This might suggest that once an alien species has managed to escape from urbanized into more natural habitats, pollinator limitation will not be a major barrier to establishment and invasion.