35 resultados para model driven system, semantic representation, semantic modeling, enterprise system development
Resumo:
PURPOSE To extend the capabilities of the Cone Location and Magnitude Index algorithm to include a combination of topographic information from the anterior and posterior corneal surfaces and corneal thickness measurements to further improve our ability to correctly identify keratoconus using this new index: ConeLocationMagnitudeIndex_X. DESIGN Retrospective case-control study. METHODS Three independent data sets were analyzed: 1 development and 2 validation. The AnteriorCornealPower index was calculated to stratify the keratoconus data from mild to severe. The ConeLocationMagnitudeIndex algorithm was applied to all tomography data collected using a dual Scheimpflug-Placido-based tomographer. The ConeLocationMagnitudeIndex_X formula, resulting from analysis of the Development set, was used to determine the logistic regression model that best separates keratoconus from normal and was applied to all data sets to calculate PercentProbabilityKeratoconus_X. The sensitivity/specificity of PercentProbabilityKeratoconus_X was compared with the original PercentProbabilityKeratoconus, which only uses anterior axial data. RESULTS The AnteriorCornealPower severity distribution for the combined data sets are 136 mild, 12 moderate, and 7 severe. The logistic regression model generated for ConeLocationMagnitudeIndex_X produces complete separation for the Development set. Validation Set 1 has 1 false-negative and Validation Set 2 has 1 false-positive. The overall sensitivity/specificity results for the logistic model produced using the ConeLocationMagnitudeIndex_X algorithm are 99.4% and 99.6%, respectively. The overall sensitivity/specificity results for using the original ConeLocationMagnitudeIndex algorithm are 89.2% and 98.8%, respectively. CONCLUSIONS ConeLocationMagnitudeIndex_X provides a robust index that can detect the presence or absence of a keratoconic pattern in corneal tomography maps with improved sensitivity/specificity from the original anterior surface-only ConeLocationMagnitudeIndex algorithm.
Resumo:
Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites.
Resumo:
Integrating physical objects (smart objects) and enterprise IT systems is still a labor intensive, mainly manual task done by domain experts. On one hand, enterprise IT backend systems are based on service oriented architectures (SOA) and driven by business rule engines or business process execution engines. Smart objects on the other hand are often programmed at very low levels. In this paper we describe an approach that makes the integration of smart objects with such backends systems easier. We introduce semantic endpoint descriptions based on Linked USDL. Furthermore, we show how different communication patterns can be integrated into these endpoint descriptions. The strength of our endpoint descriptions is that they can be used to automatically create REST or SOAP endpoints for enterprise systems, even if which they are not able to talk to the smart objects directly. We evaluate our proposed solution with CoAP, UDP and 6LoWPAN, as we anticipate the industry converge towards these standards. Nonetheless, our approach also allows easy integration with backend systems, even if no standardized protocol is used.
Resumo:
Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.