75 resultados para low energy electron diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Rosetta mission on its way to comet 67P/Churyumov-Gerasimenko will remain for more than a year in the close vicinity (1 km) of the comet. The two ROSINA mass spectrometers on board Rosetta are designed to analyze the neutral and ionized volatile components of the cometary coma. However, the relative velocity between the comet and the spacecraft will be minimal and also the velocity of the outgassing particles is below 1km∕s. This combination leads to very low ion energies in the surrounding plasma of the comet, typically below 20eV. Additionally, the spacecraft may charge up to a few volts in this environment. In order to simulate such plasma and to calibrate the mass spectrometers, a source for ions with very low energies had to be developed for the use in the laboratory together with the different gases expected at the comet. In this paper we present the design of this ion source and we discuss the physical parameters of the ion beam like sensitivity, energy distribution, and beam shape. Finally, we show the first ion measurements that have been performed together with one of the two mass spectrometers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Io's plasma and neutral tori play significant roles in the Jovian magnetosphere. We present feasibility studies of measuring low-energy energetic neutral atoms (LENAs) generated from the Io tori. We calculate the LENA flux between 10 eV and 3 keV. The energy range includes the corotational plasma flow energy. The expected differential flux at Ganymede distance is typically 10(3)-10(5) cm(-2) s(-1) sr(-1) eV(-1) near the energy of the corotation. It is above the detection level of the planned LENA sensor that is to be flown to the Jupiter system with integration times of 0.01-1 s. The flux has strong asymmetry with respective to the Io phase. The observations will exhibit periodicities, which can be attributed to the Jovian magnetosphere rotation and the rotation of Io around Jupiter. The energy spectra will exhibit dispersion signatures, because of the non-negligible flight time of the LENAs from Io to the satellite. In 2030, the Jupiter exploration mission JUICE will conduct a LENA measurement with a LENA instrument, the Jovian Neutrals Analyzer (JNA). From the LENA observations collected by JNA, we will be able to derive characteristic quantities, such as the density, velocity, velocity distribution function, and composition of plasma-torus particles. We also discuss the possible physics to be explored by JNA in addition to the constraints for operating the sensor and analyzing the obtained dataset. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on antimatter allow us to shed light on fundamental issues of contemporary physics. The only antiatom presently available, antihydrogen, is produced making use of the Antiproton Decelerator (AD) facility at CERN. International collaborations currently on the floor (ALPHA, ASACUSA and ATRAP) have succeeded in producing antihydrogen and are now involved in its confinement and manipulation. The AEGIS experiment is currently completing the commissioning of the apparatus which will generate and manipulate antiatoms. The present paper, after a report on the main results achieved with antihydrogen physics, gives an overview of the AEGIS experiment, describes its current status and discusses its first target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emulsion detectors feature a very high position resolution and consequently represent an ideal device when particle detection is required at the micrometric scale. This is the case of quantum interferometry studies with antimatter, where micrometric fringes have to be measured. In this framework, we designed and realized a new emulsion based detector characterized by a gel enriched in terms of silver bromide crystal contents poured on a glass plate. We tested the sensitivity of such a detector to low energy positrons in the range 10–20 keV . The obtained results prove that nuclear emulsions are highly efficient at detecting positrons at these energies. This achievement paves the way to perform matter-wave interferometry with positrons using this technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In high energy teletherapy, VMC++ is known to be a very accurate and efficient Monte Carlo (MC) code. In principle, the MC method is also a powerful dose calculation tool in other areas in radiation oncology, e.g., brachytherapy or orthovoltage radiotherapy. However, VMC++ is not validated for the low-energy range of such applications. This work aims in the validation of the VMC++ MC code for photon beams in the energy range between 20 and 1000 keV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-energy CT provides information about how substances behave at different energies, the ability to generate virtual unenhanced datasets, and improved detection of iodine-containing substances on low-energy images. Knowing how a substance behaves at two different energies can provide information about tissue composition beyond that obtainable with single-energy techniques. The term K edge refers to the spike in attenuation that occurs at energy levels just greater than that of the K-shell binding because of the increased photoelectric absorption at these energy levels. K-edge values vary for each element, and they increase as the atomic number increases. The energy dependence of the photoelectric effect and the variability of K edges form the basis of dual-energy techniques, which may be used to detect substances such as iodine, calcium, and uric acid crystals. The closer the energy level used in imaging is to the K edge of a substance such as iodine, the more the substance attenuates. In the abdomen and pelvis, dual-energy CT may be used in the liver to increase conspicuity of hypervascular lesions; in the kidneys, to distinguish hyperattenuating cysts from enhancing renal masses and to characterize renal stone composition; in the adrenal glands, to characterize adrenal nodules; and in the pancreas, to differentiate between normal and abnormal parenchyma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare lattice data for the short-distance part of the static energy in 21 flavor quantum chromodynamics (QCD) with perturbative calculations, up to next-to-next-to-next-to leading-logarithmic accuracy. We show that perturbation theory describes very well the lattice data at short distances, and exploit this fact to obtain a determination of the product of the lattice scale r0 with the QCD scale ΛMS. With the input of the value of r0, this provides a determination of the strong coupling αs at the typical distance scale of the lattice data. We obtain αs1.5  GeV0.3260.019, which provides a novel determination of αs with three-loop accuracy (including resummation of the leading ultrasoft logarithms), and constitutes one of the few low-energy determinations of αs available. When this value is evolved to the Z-mass scale MZ, it corresponds to αsMZ0.11560.00220.0021.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of liquid xenon to low-energy electronic recoils is relevant in the search for dark-matter candidates which interact predominantly with atomic electrons in the medium, such as axions or axionlike particles, as opposed to weakly interacting massive particles which are predicted to scatter with atomic nuclei. Recently, liquid-xenon scintillation light has been observed from electronic recoils down to 2.1 keV, but without applied electric fields that are used in most xenon dark-matter searches. Applied electric fields can reduce the scintillation yield by hindering the electron-ion recombination process that produces most of the scintillation photons. We present new results of liquid xenon's scintillation emission in response to electronic recoils as low as 1.5 keV, with and without an applied electric field. At zero field, a reduced scintillation output per unit deposited energy is observed below 10 keV, dropping to nearly 40% of its value at higher energies. With an applied electric field of 450 V/cm, we observe a reduction of the scintillation output to about 75% relative to the value at zero field. We see no significant energy dependence of this value between 1.5 and 7.8 keV. With these results, we estimate the electronic-recoil energy thresholds of ZEPLIN-III, XENON10, XENON100, and XMASS to be 2.8, 2.5, 2.3, and 1.1 keV, respectively, validating their excellent sensitivity to low-energy electronic recoils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency is a major concern in the design of Wireless Sensor Networks (WSNs) and their communication protocols. As the radio transceiver typically accounts for a major portion of a WSN node’s power consumption, researchers have proposed Energy-Efficient Medium Access (E2-MAC) protocols that switch the radio transceiver off for a major part of the time. Such protocols typically trade off energy-efficiency versus classical quality of service parameters (throughput, latency, reliability). Today’s E2-MAC protocols are able to deliver little amounts of data with a low energy footprint, but introduce severe restrictions with respect to throughput and latency. Regrettably, they yet fail to adapt to varying traffic load at run-time. This paper presents MaxMAC, an E2-MAC protocol that targets at achieving maximal adaptivity with respect to throughput and latency. By adaptively tuning essential parameters at run-time, the protocol reaches the throughput and latency of energy-unconstrained CSMA in high-traffic phases, while still exhibiting a high energy-efficiency in periods of sparse traffic. The paper compares the protocol against a selection of today’s E2-MAC protocols and evaluates its advantages and drawbacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a case of an accidental death or potential suicide by revolver with subsequent injury of another person. A 44-year-old man shot himself in the head while manipulating his.38 caliber special revolver in the kitchen in the presence of his wife, standing approximately 1.5 m next to him. After passing through the husband's head, the lead round-nose bullet entered the region underneath his wife's left eye. When the bullet left the man's head, it retained the energy to penetrate the soft tissue at this distance, including the skin and thin bone plates like the orbital wall. Owing to the low energy of the projectile, the entry wound was of atypical in shape and without loss of tissue. Only a small line-resembling a cut-was externally visible. The man died in the hospital from his injuries; his wife suffered visual loss of her left eye.