35 resultados para lighter trivalent lanthanides
Resumo:
The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes. From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs. Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.
Resumo:
We present a barium (Ba) isotope fractionation study of marine biogenic carbonates (aragonitic corals). The major aim is to provide first constraints on the Ba isotope fractionation between modern surface sea water and coral skele- ton. Mediterranean surface sea water was found to be enriched in the heavy Ba isotopes compared to previously reported values for marine open ocean authi- genic and terrestrial minerals. In aquarium experiments with a continuous sup- ply of Mediterranean surface water, the Ba isotopic composition of the bulk sample originating from cultured, aragonitic scleractinian corals (d137/134Ba between +0.16 +/- 0.12permil and +0.41 +/-0.12permil) were isotopically identical or lighter than that of the ambient Mediterranean surface sea water (d137/134Ba = +0.42 +/- 0.07permil, 2SD), which corresponds to an empirical maximum value of Ba isotope fractionation of D137/134Bacoral-seawater = -0.26 +/- 0.14permil at 25°C. This maximum Ba isotope fractionation is close and identical in direction to previous results from inorganic precipitation experiments with aragonite- structured pure BaCO3 (witherite). The variability in measured Ba concentrations of the cultured corals is at odds with a uniform distribution coefficient, DBa/Ca, thus indicating stronger vital effects on isotope than element discrimination. This observation supports the hypothesis that the Ba isotopic compositions of these corals do not result from simple equilibrium between the skeleton and the bulk sea water. Complementary coral samples from natural settings (tropical shallow-water corals from the Bahamas and Florida and cold- water corals from the Norwegian continental shelf) show an even wider range in d137/134Ba values (+0.14 +/- 0.08permil and +0.77 +/- 0.11permil), most probably due to additional spatial and/or temporal sea water heterogeneity, as indicated by recent publications.
Resumo:
Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data: 1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.
Resumo:
Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1–10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) was the primary oxidation state adsorbing to cells and being internalized by them. Cellular Cr:C ratios (<0.5 μmol Cr mol C−1) of the eight phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios in marine particles with a high biogenic component (10–300 μmol Cr mol C−1). This indicates that Cr(III) likely accumulates in marine particles due to uptake and/or adsorption. Mass balance calculations demonstrate that surface water Cr deficits can be explained via loss of Cr(III) to exported particles, thereby providing a mechanism to account for the nutrient depth profile for Cr in modern seawater. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr(III) associated with exported organic carbon is likely enriched in lighter isotopes. Most sedimentary Cr isotope studies have thus far neglected internal fractionating processes in the marine Cr cycle, but our data indicate that loss of Cr to exported particles may be traced in the sedimentary d53Cr record.
Resumo:
This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 oC in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04 ‰, 2sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (~7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.