44 resultados para lead in soils


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Europeanization challenges national democratic systems. As part and parcel of the broader internationalization of politics, Europeanization is associated with a shift from policymaking within majoritarian, elected representative bodies towards technocratic decisions among non-majoritarian and non-elected bodies (Kohler-Koch and Rittberger 2008, Lavenex 2013). It is thus said to weaken the influence of citizens and parliaments on the making of policies and to undermine democratic collective identity (Lavenex 2013, Schimmelfennig 2010). The weakening of national parliaments has been referred to as “de-parliamentarisation” (Goetz and Meyer-Sahling 2008) and has nurtured a broader debate regarding the democratic deficit in the EU. While not being a member of the EU, Switzerland has not remained unaffected by these changes. As discussed in the contribution by Fischer and Sciarini, state executive actors take the lead in Switzerland's European policy. They are responsible for the conduct of international negotiations, they own the treaty making power, and it is up to them to decide whether they wish to launch a negotiation with the EU. In addition, the strong take-it or leave-it character of Europeanized acts limits the room for manoeuver of the parliamentary body also in the ratification phase. Among the public, the rejection of the treaty on the European constitution has definitely closed the era of “permissive consensus” (Hooghe and Marks 2009). However, the process of European unification remains far remote from the European public. In Switzerland, the strongly administrative character of international legislation hinders public discussion (Vögeli 2007). In such a context, the media may serve as cue for the public: By delivering information about the extent and nature of Europeanized policymaking, the media enable citizens to form their own opinions and to hold their representatives accountable. In this sense media coverage may not only be considered an indicator of the information delivered to the public, but it may also enhance the democratic legitimacy of Europeanized policymaking (for a similar argument, see Tresch and Jochum 2005). While the previous contributions to this debate have examined the Europeanization of Swiss (primary and secondary) legislation, we take a closer look at two additional domestic arenas that are both supposed to be under pressure due to Europeanization: The parliament and the media. To that end, we rely on data gathered in a research project that two of us carried out in the context of the NCCR Democracy.1 While this project was primarily interested in the mediatization of decision-making processes in Switzerland, it also investigated the conditional role played by internationalization/Europeanization. For our present purposes, we shall exploit the two data-sets that were developed as part of a study of the political agenda-setting power of the media (Sciarini and Tresch 2012, 2013, Tresch et al. 2013): A data-set on issue attention in parliamentary interventions (initiatives, motions, postulates,2 interpellations and questions) and a data-set on issue attention in articles from the Neue Zürcher Zeitung (NZZ). The data covers the years 1995 to 2003 and the coding of issues followed the classification system developed in the “Policy Agendas Project” (Baumgartner and Jones 1993).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Some introduced invasive species may be competitively superior to natives because they release allelochemicals, which negatively affect native species. Allelochemicals can be immediately effective after being released but can also persist in soils, resulting in a legacy effect. However, to our knowledge there are no studies which distinguish between allelopathic legacy and immediate allelopathy of invasive species and also test for their relative importance and possible interdependence. We used eleven invasive species and tested whether they show immediate allelopathy and allelopathic legacy effects in a factorial pairwise competition experiment using field-collected soil (invaded/non-invaded) and activated carbon to neutralize allelochemicals. We grew two native and the invasive species in both monocultures and pairwise mixtures. In monocultures, the native species did not experience an allelopathic legacy effect of the invasives, suggesting that invaders generally lack persistent allelochemicals. However, the effects of invader allelochemicals were modulated by competitive interactions. In competition, immediate allelopathy decreased competitive ability of natives, while allelopathic legacy positively affected the natives. Moreover, immediate allelopathic and allelopathic legacy effects were strongly negatively correlated. Our results suggest that both immediately released allelochemicals and the allelochemical legacy of invasive species are important for plant performance under natural conditions, and that natives should be able to recover once the invaders are removed. To test whether immediate allelopathy is responsible for plant invasion success, further studies should compare allelopathic effects between invasive and closely related native species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363–405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12–1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES = 30–51%). Therefore, Ce fractionation from other REE is attributed to a Ce oxidation and precipitation potentially assisted by oxyhydroxide scavenging. In the C-horizon, Ce(III) and Ce(IV) are mainly distributed in REE-minerals of the rhabdophane group found in pores and cracks. The similarity between the Ce(III) proportion of rhabdophane grains (XCe(III)-XANES = 74–89%) with that of the bedrock (BR-XCe(III)-XANES = 79%) suggests no significant fractionation of Ce(III) and Ce(IV) between solution and mineral during the successive stages of primary REE-mineral alteration, transport in solution and secondary precipitation in the incipient stages of weathering. Overall, our novel spectroscopic approach shows that Ce is not necessarily oxidized nor fractionated from other REE during weathering in lateritic conditions. This implies that like Ce(III), Ce(IV) can be mobilized in aqueous fluids during weathering, possibly thanks to complexation with organic molecules, and can precipitate together with Ce(III) in secondary REE-bearing minerals. The corollary is that (paleo)redox reconstructions in soils and/or sediments based on Ce-anomaly in weathered rocks or minerals must be interpreted with caution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An  ∼ 1000-member ensemble of the Bern3D-LPJ carbon–climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Natural orifice transluminal endoscopic surgery (NOTES) is a multidisciplinary surgical technique. If conventional endoscopic instrumentation can be easily mastered, surgeons with laparoscopic experience could head NOTES interventions. MATERIALS AND METHODS: Thirty individuals were tested for endoscopic dexterity. Group 1 included seven gastroenterologists, group 2 included 12 laparoscopically experienced surgeons lacking endoscopic experience, and group 3 included 11 interns who had no hands-on endoscopic or surgical experience. Each individual repeated an easy (T1), medium (T2), and difficult (T3) task ten times with endoscopic equipment on a NOTES skills-box. RESULTS: Group 3 had significantly poorer performances for all three tasks compared to the other groups. No significant differences were seen between groups 1 and 2 for T1 and T2. The initial T3 performance of group 1 was better than that of group 2, but their performance after repetition was not statistically different. Groups 2 and 3 improved significantly with repetition, and group 2 eventually performed as well as group 1. CONCLUSIONS: The data indicate that laparoscopic surgeons quickly learned to handle the endoscopic equipment. This suggests that a lack of endoscopic experience does not handicap laparoscopic surgeons when performing endoscopic tasks. Based on their knowledge of anatomy and the complication management acquired during surgical education, surgeons are well equipped to take the lead in interdisciplinary NOTES collaborations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been known for over a hundred years that microorganisms can produce volatile arsenic (As) species, termed “arsines”. However, this topic has received relatively little attention compared to As behaviour in soils and biotransformation through the trophic level in the marine and terrestrial environment. We believe this is due to long-standing misconceptions regarding volatile As stability and transport as well as an absence, until recently, of appropriate sampling methods. First and foremost, an attempt is made to unify arsines' designations, notations and formulas, taking into account all the different terms used in the literature. Then, the stability of As volatile species is discussed and new analytical developments are explored. Further, the special cases of diffuse low-level emissions (e.g. soil and sediment biovolatilisation), and point sources with high-level emissions (geothermal environments, landfills, and natural gas) are comprehensively reviewed. In each case, future possible areas of research and unknown mechanisms are identified and their importance towards the global As biogeochemical cycle is explored. This review gathers new information regarding mechanisms, stability, transport and sampling of the very elusive arsines and shows that more research should be conducted on this important process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents an integrated mineralogical-geochemical data base on fine-grained sediments transported by all major rivers of southern Africa, including the Zambezi, Okavango, Limpopo, Olifants, Orange and Kunene. Clay mineralogy, bulk geochemistry, Sr and Nd isotopic signatures of river mud, considered as proxy of suspended load, are used to investigate the influence of source-rock lithology and weathering intensity on the composition of clay and silt produced in subequatorial to subtropical latitudes. Depletion in mobile alkali and alkaline-earth metals, minor in arid Namibia, is strong in the Okavango, Kwando and Upper Zambezi catchments, where recycling is also extensive. Element removal is most significant for Na, and to a lesser extent for Sr. Depletion in K, Ca and other elements, negligible in Namibia, is moderate elsewhere. The most widespread clay minerals are smectite, dominant in muds derived from Karoo or Etendeka flood basalts, or illite and chlorite, dominant in muds derived from metasedimentary rocks of the Damara Orogen or Zimbabwe Craton. Kaolinite represents 30-40% of clay minerals only in Okavango and Upper Zambezi sediments sourced in humid subequatorial Angola and Zambia. After subtracting the effects of recycling and of local accumulation of authigenic carbonates in soils, the regional distribution of clay minerals and chemical indices consistently reflect weathering intensity primarily controlled by climate. Bulk geochemistry identifies most clearly volcaniclastic sediments and mafic sources in general, but cannot discriminate the other sources of detritus in detail. Instead, Sr and Nd isotopic fingerprints are insensitive to weathering, and thus mirror faithfully the tectonic structure of the southern African continent. Isotopic tools thus represent a much firmer basis than bulk geochemistry or clay mineralogy in the provenance study of mudrocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose Precipitation of dissolved organic matter (DOM) by multivalent cations is important for biogeochemical cycling of organic carbon. We investigated to which extent cation bridges are involved in DOM precipitation and how cross-links by cations and water molecule bridges (WaMB) stabilise the matrix of precipitated DOM. Materials and methods DOM was precipitated from the aqueous extract of a forest floor layer adding solutions of Ca(NO3)2, Al(NO3)3 and Pb(NO3)2 with different initial metal cation/C (Me/C) ratios. Precipitates were investigated by differential scanning calorimetry before and after ageing to detect cation bridges, WaMB and restructuring of supramolecular structure. Results and discussion Twenty-five to sixty-seven per cent of the dissolved organic carbon was precipitated. The precipitation efficiency of cations increased in the order Ca < Al < Pb, while the cation content of precipitates increased in the order Pb < Ca < Al. The different order and the decrease in the WaMB transition temperature (T*) for Al/C > 3 is explained by additional formation of small AlOOH particles. Thermal analysis indicated WaMB and their disruption at T* of 53–65 °C. Like cation content, T* increased with increasing Me/C ratio and in the order Ca < Pb < Al for low Me/C. This supports the general assumption that cross-linking ability increases in the order Ca < Pb < Al. The low T* for high initial Me/C suggests less stable and less cross-linked precipitates than for low Me/C ratios. Conclusions Our results suggest a very similar thermal behaviour of OM bound in precipitates compared with soil organic matter and confirms the relevance of WaMB in stabilisation of the supramolecular structure of cation-DOM precipitates. Thus, stabilisation of the supramolecular structure of the DOM precipitates is subjected to dynamics in soils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sample preparation procedures for AMS measurements of 129I and 127I in environmental materials and some methodological aspects of quality assurance are discussed. Measurements from analyses of some pre-nuclear soil and thyroid gland samples and of a systematic investigation of natural waters in Lower Saxony, Germany, are described. Although the up-to-now lowest 129I/127I ratios in soils and thyroid glands were observed, they are still suspect to contamination since they are significantly higher than the pre-nuclear equilibrium ratio in the marine hydrosphere. A survey on all available 129I/127I isotopic ratios in precipitation shows a dramatic increase until the middle of the 1980s and a stabilization since 1987 at high isotopic ratios of about (3.6–8.3)×10−7. In surface waters, ratios of (57–380)×10−10 are measured while shallow ground waters show with ratios of (1.3–200)×10−10 significantly lower values with a much larger spread. The data for 129I in soils and in precipitation are used to estimate pre-nuclear and modern 129I deposition densities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Ventricular arrhythmias (VAs) from the left ventricular outflow tract (LVOT) region can be inaccessible for ablation because of epicardial fat or overlying coronary arteries. OBJECTIVE We describe surgical cryoablation of this type of VA. METHODS From March 2009 to 2014, 190 consecutive patients with VAs originating from the LVOT underwent ablation at our institution. Four patients (2%) underwent surgical cryoablation for highly symptomatic VAs after failing catheter ablation. RESULTS In all patients, endocardial or percutaneous epicardial mapping was consistent with origin in the LVOT. In 2 patients, the points of earliest activation during VAs were marked with a bipolar pacing lead in the overlying cardiac vein for guidance during surgery. Surgical cryoablation was successful in 3 of the 4 patients. The fourth patient subsequently had successful endocardial catheter ablation. During a mean follow-up of 22 ± 16 months (range 4-42 months), all patients showed abolition of or marked reduction in symptomatic VA. However, 1 patient subsequently required percutaneous intervention to the left anterior descending coronary artery; another developed progressive left ventricular systolic dysfunction caused by nonischemic cardiomyopathy; and a third patient underwent permanent pacemaker implantation because of complete atrioventricular block after concomitant aortic valve replacement. CONCLUSION Surgical cryoablation is an option for highly symptomatic drug-resistant VAs emanating from the LVOT region. Despite extensive preoperative mapping, the procedure is not effective for all patients, and coronary injury is a risk.