37 resultados para labelling
Resumo:
The effect of externally applied l-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5′-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing l-cysteine to the nutrient solution increased internal cysteine, γ-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm l-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm l-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of l-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm l-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using 35SO42– in the presence of 0.5 mm l-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.
Resumo:
The sustainable development paradigm raises issues of global, intra- and intergenerational social equity as well as respect for nature, and economic welfare. Switzerland is confronted by these issues within its own country, and has a moral responsibility vis-a-vis the rest of the world. Syndromes of global change are affecting many eco-regions, not only in developing and transition countries, but to a lesser extent also the affluent countries. Switzerland as a nation has an impact on syndromes through its far-reaching economic activities, which are non-sustainable. At the global level, more modest consumption patterns, a considerably slowed demographic change, a nonconsumptive but sustainable use of natural resources, and conflict transformation are the main prerequisites for improving sustainability. Switzerland's current contribution to sustainability is much less than what it could be, hence the need for additional action along general principles in,accordance with Swiss traditions and innovative potentials. A number of concrete actions could be taken immediately. These are: labelling the socially and ecologically sustainable production of goods and services, and their negotiation at WTO level; enhancing international cooperation and research; strengthening education and research for sustainability, and emphasizing energy and material flux efficiency at home and abroad.
Resumo:
Myocardial infarction (MI) leads to a severe loss of cardiomyocytes, which in mammals are replaced by scar tissue. Epicardial derived cells (EPDCs) have been reported to differentiate into cardiomyocytes during development, and proposed to have cardiomyogenic potential in the adult heart. However, mouse MI models reveal little if any contribution of EPDCs to myocardium. In contrast to adult mammals, teleosts possess a high myocardial regenerative capacity. To test if this advantage relates to the properties of their epicardium, we studied the fate of EPDCs in cryoinjured zebrafish hearts. To avoid the limitations of genetic labelling, which might trace only a subpopulation of EPDCs, we used cell transplantation to track all EPDCs during regeneration. EPDCs migrated to the injured myocardium, where they differentiated into myofibroblasts and perivascular fibroblasts. However, we did not detect any differentiation of EPDCs nor any other non-cardiomyocyte population into cardiomyocytes, even in a context of impaired cardiomyocyte proliferation. Our results support a model in which the epicardium promotes myocardial regeneration by forming a cellular scaffold, and suggests that it might induce cardiomyocyte proliferation and contribute to neoangiogenesis in a paracrine manner.
Resumo:
This report is aimed at elucidating the effect of mannitol and cold treatments on P uptake and protein phosphorylation in Lemna minor plants. Duckweed p lants were incu bated in the presence of [32P]or [33P]Pi in half-strength phosphate deprived E-medium under constant light regime for 1.5 h. Total plant protein extracts (pellet and supernatant) were then prepared and subjected to IEF x SDS-PAGE. To analyse the effect of the stresses on P uptake and protein labelling, Lemna minor plants were preincubated with 0.1, 0.5 mol · L-1 mannitol and at 4°C respectively, for 4 hours, before adding labelled orthophosphate. The results show that the general protein phosphorylation (including LHCII) is related to the level of P uptake. Radioactive phosphate incorporation is stimulated by a low concentration of mannitol (0.1 mol · L-1) but reduced by 0.5 mol · L-1 mannitol and cold stress in planta. The labelling into proteins is affected neither when stresses were applied to the plants after incubation with labelled orthophosphate, nor after in vitro protein phosphorylation. This indicates that general protein kinase activities in vivo are strictly limited by P uptake. A marked accumulation of soluble hexoses (mainly sucrose, glucose, and fructose) is observed under imposed stress, suggesting that the inhibition of P uptake in response to hyperosmotic and cold stresses is mediated by sugar accumulation in situ. However, metabolisable sugars like glucose did not alter the entry of phosphate at concentrations of 0.5 mol · L-1, showing that the chemical nature of the osmoticum influences P uptake.
Resumo:
The enzyme catalysing the reduction of adenosine 5′-phosphosulfate (AdoPS) to sulfite in higher plants, AdoPS reductase, is considered to be the key enzyme of assimilatory sulfate reduction. In order to address its reaction mechanism, the APR2 isoform of this enzyme from Arabidopsis thaliana was overexpressed in Escherichia coli and purified to homogeneity. Incubation of the enzyme with [35S]AdoPS at 4 °C resulted in radioactive labelling of the protein. Analysis of APR2 tryptic peptides revealed 35SO2–3 bound to Cys248, the only Cys conserved between AdoPS and prokaryotic phosphoadenosine 5′-phosphosulfate reductases. Consistent with this result, radioactivity could be released from the protein by incubation with thiols, inorganic sulfide and sulfite. The intermediate remained stable, however, after incubation with sulfate, oxidized glutathione or AdoPS. Because truncated APR2, missing the thioredoxin-like C-terminal part, could be labelled even at 37 °C, and because this intermediate was more stable than the complete protein, we conclude that the thioredoxin-like domain was required to release the bound SO2–3 from the intermediate. Taken together, these results demonstrate for the first time the binding of 35SO2–3 from [35S]AdoPS to AdoPS reductase and its subsequent release, and thus contribute to our understanding of the molecular mechanism of AdoPS reduction in plants.
Resumo:
MRSI grids frequently show spectra with poor quality, mainly because of the high sensitivity of MRS to field inhomogeneities. These poor quality spectra are prone to quantification and/or interpretation errors that can have a significant impact on the clinical use of spectroscopic data. Therefore, quality control of the spectra should always precede their clinical use. When performed manually, quality assessment of MRSI spectra is not only a tedious and time-consuming task, but is also affected by human subjectivity. Consequently, automatic, fast and reliable methods for spectral quality assessment are of utmost interest. In this article, we present a new random forest-based method for automatic quality assessment of (1) H MRSI brain spectra, which uses a new set of MRS signal features. The random forest classifier was trained on spectra from 40 MRSI grids that were classified as acceptable or non-acceptable by two expert spectroscopists. To account for the effects of intra-rater reliability, each spectrum was rated for quality three times by each rater. The automatic method classified these spectra with an area under the curve (AUC) of 0.976. Furthermore, in the subset of spectra containing only the cases that were classified every time in the same way by the spectroscopists, an AUC of 0.998 was obtained. Feature importance for the classification was also evaluated. Frequency domain skewness and kurtosis, as well as time domain signal-to-noise ratios (SNRs) in the ranges 50-75 ms and 75-100 ms, were the most important features. Given that the method is able to assess a whole MRSI grid faster than a spectroscopist (approximately 3 s versus approximately 3 min), and without loss of accuracy (agreement between classifier trained with just one session and any of the other labelling sessions, 89.88%; agreement between any two labelling sessions, 89.03%), the authors suggest its implementation in the clinical routine. The method presented in this article was implemented in jMRUI's SpectrIm plugin. Copyright © 2016 John Wiley & Sons, Ltd.
Resumo:
Cerebral malaria (CM) is associated with high mortality and morbidity as a certain percentage of survivors suffers from persistent neurological sequelae. The mechanisms leading to death and functional impairments are yet not fully understood. This study investigated biochemical and morphological markers of apoptosis in the brains of mice infected with Plasmodium berghei ANKA. Cleaved caspase-3 was detected in the brains of animals with clinical signs of CM and immunoreactivity directly correlated with the clinical severity of the disease. Caudal parts of the brain showed more intense immunoreactivity for cleaved caspase-3. Double-labelling experiments revealed processing of caspase-3 primarily in neurons and oligodendrocytes. These cells also exhibited apoptotic-like morphological profiles in ultrastructural analysis. Further, cleavage of caspase-3 was found in endothelial cells. In contrast to neurons and oligodendrocytes, apoptosis of endothelial cells already occurred in early stages of the disease. Our results are the first to demonstrate processing of caspase-3 in different central nervous system cells of animals with CM. Apoptosis of endothelial cells may represent a critical issue for the development of the disease in the mouse model. Neurological signs and symptoms might be attributable, at least in part, to apoptotic degeneration of neurons and glia in advanced stages of murine CM.