61 resultados para image texture analysis
Resumo:
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Resumo:
BACKGROUND AND AIMS: Naturally occurring anti-idiotypic antibodies structurally mimic the original antibody epitope. Anti-idiotypes, therefore, are interesting tools for the portrayal of conformational B-cell epitopes of allergens. In this study we used this strategy particularly for major timothy grass pollen (Phleum pratense) allergen Phl p 1. METHODS AND RESULTS: We used a combinatorial phage display library constructed from the peripheral IgG repertoire of a grass pollen allergic patient which was supposed to contain anti-idiotypic Fab specificities. Using purified anti-Phl p 1 IgG for biopanning, several Fab displaying phage clones could be isolated. 100 amplified colonies were screened for their binding capacity to anti-Phl p 1-specific antibodies, finally resulting in four distinct Fab clones according to sequence analysis. Interestingly, heavy chains of all clones derived from the same germ line sequence and showed high homology in their CDRs. Projecting their sequence information on the surface of the natural allergen Phl p 1 (PDB ID: 1N10) indicated matches on the N-terminal domain of the homo-dimeric allergen, including the bridging region between the two monomers. The resulting epitope patches were formed by spatially distant sections of the primary allergen sequence. CONCLUSION: In this study we report that anti-idiotypic specificities towards anti-Phl p 1 IgG, selected from a Fab library of a grass pollen allergic patient, mimic a conformational epitope patch being distinct from a previously reported IgE epitope area.
Resumo:
The study describes brain areas involved in medial temporal lobe (mTL) seizures of 12 patients. All patients showed so-called oro-alimentary behavior within the first 20 s of clinical seizure manifestation characteristic of mTL seizures. Single photon emission computed tomography (SPECT) images of regional cerebral blood flow (rCBF) were acquired from the patients in ictal and interictal phases and from normal volunteers. Image analysis employed categorical comparisons with statistical parametric mapping and principal component analysis (PCA) to assess functional connectivity. PCA supplemented the findings of the categorical analysis by decomposing the covariance matrix containing images of patients and healthy subjects into distinct component images of independent variance, including areas not identified by the categorical analysis. Two principal components (PCs) discriminated the subject groups: patients with right or left mTL seizures and normal volunteers, indicating distinct neuronal networks implicated by the seizure. Both PCs were correlated with seizure duration, one positively and the other negatively, confirming their physiological significance. The independence of the two PCs yielded a clear clustering of subject groups. The local pattern within the temporal lobe describes critical relay nodes which are the counterpart of oro-alimentary behavior: (1) right mesial temporal zone and ipsilateral anterior insula in right mTL seizures, and (2) temporal poles on both sides that are densely interconnected by the anterior commissure. Regions remote from the temporal lobe may be related to seizure propagation and include positively and negatively loaded areas. These patterns, the covarying areas of the temporal pole and occipito-basal visual association cortices, for example, are related to known anatomic paths.
Resumo:
A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.
Resumo:
PURPOSE: To quantify optical coherence tomography (OCT) images of the central retina in patients with blue-cone monochromatism (BCM) and achromatopsia (ACH) compared with healthy control individuals. METHODS: The study included 15 patients with ACH, 6 with BCM, and 20 control subjects. Diagnosis of BCM and ACH was established by visual acuity testing, morphologic examination, color vision testing, and Ganzfeld ERG recording. OCT images were acquired with the Stratus OCT 3 (Carl Zeiss Meditec AG, Oberkochen, Germany). Foveal OCT images were analyzed by calculating longitudinal reflectivity profiles (LRPs) from scan lines. Profiles were analyzed quantitatively to determine foveal thickness and distances between reflectivity layers. RESULTS: Patients with ACH and BCM had a mean visual acuity of 20/200 and 20/60, respectively. Color vision testing results were characteristic of the diseases. The LRPs of control subjects yielded four peaks (P1-P4), presumably representing the RPE (P1), the ovoid region of the photoreceptors (P2), the external limiting membrane (ELM) (P3), and the internal limiting membrane (P4). In patients with ACH, P2 was absent, but foveal thickness (P1-P4) did not differ significantly from that in the control subjects (187 +/- 20 vs. 192 +/- 14 microm, respectively). The distance from P1 to P3 did not differ significantly (78 +/- 10 vs. 82 +/- 5 microm) between ACH and controls subjects. In patients with BCM, P3 was lacking, and P2 advanced toward P1 compared with the control subjects (32 +/- 6 vs. 48 +/- 4 microm). Foveal thickness (153 +/- 16 microm) was significantly reduced compared with that in control subjects and patients with ACH. CONCLUSIONS: Quantitative OCT image analysis reveals distinct patterns for controls subjects and patients with ACH and BCM, respectively. Quantitative analysis of OCT imaging can be useful in differentiating retinal diseases affecting photoreceptors. Foveal thickness is similar in both normal subjects and patients with ACH but is decreased in patients with BCM.
Resumo:
Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. METHODS: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with (99m)Tc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. RESULTS: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P<0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P=0.004) and involvement of diagonal branches (P=0.01). CONCLUSION: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.
Resumo:
RATIONALE AND OBJECTIVES: To evaluate the effect of a modified abdominal multislice computed tomography (CT) protocol for obese patients on image quality and radiation dose. MATERIALS AND METHODS: An adult female anthropomorphic phantom was used to simulate obese patients by adding one or two 4-cm circumferential layers of fat-equivalent material to the abdominal portion. The phantom was scanned with a subcutaneous fat thickness of 0, 4, and 8 cm using the following parameters (detector configuration/beam pitch/table feed per rotation/gantry rotation time/kV/mA): standard protocol A: 16 x 0.625 mm/1.75/17.5 mm/0.5 seconds/140/380, and modified protocol B: 16 x 1.25 mm/1.375/27.5 mm/1.0 seconds/140/380. Radiation doses to six abdominal organs and the skin, image noise values, and contrast-to-noise ratios (CNRs) were analyzed. Statistical analysis included analysis of variance, Wilcoxon rank sum, and Student's t-test (P < .05). RESULTS: Applying the modified protocol B with one or two fat rings, the image noise decreased significantly (P < .05), and simultaneously, the CNR increased significantly compared with protocol A (P < .05). Organ doses significantly increased, up to 54.7%, comparing modified protocol B with one fat ring to the routine protocol A with no fat rings (P < .05). However, no significant change in organ dose was seen for protocol B with two fat rings compared with protocol A without fat rings (range -2.1% to 8.1%) (P > .05). CONCLUSIONS: Using a modified abdominal multislice CT protocol for obese patients with 8 cm or more of subcutaneous fat, image quality can be substantially improved without a significant increase in radiation dose to the abdominal organs.
Resumo:
Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluated with respect to linear correlation and reproducibility. Time constants were estimated by both MRI and respiratory gas analysis data and compared for agreement. A good linear correlation between signal intensity and end-expiratory gas fraction was found (correlation coefficient 0.99+/-0.01). The data were reproducible (standard error of signal intensity 8% vs. that of gas fraction 5%) and the comparison of time constants yielded a sufficient agreement. According to the good linear correlation and the acceptable reproducibility, we suggest the (19)F-MRI to be a valuable tool for quantification of intrapulmonary SF(6) and hence lung function.
Resumo:
OBJECTIVE To compare the effects of antiplatelets and anticoagulants on stroke and death in patients with acute cervical artery dissection. DESIGN Systematic review with Bayesian meta-analysis. DATA SOURCES The reviewers searched MEDLINE and EMBASE from inception to November 2012, checked reference lists, and contacted authors. STUDY SELECTION Studies were eligible if they were randomised, quasi-randomised or observational comparisons of antiplatelets and anticoagulants in patients with cervical artery dissection. DATA EXTRACTION Data were extracted by one reviewer and checked by another. Bayesian techniques were used to appropriately account for studies with scarce event data and imbalances in the size of comparison groups. DATA SYNTHESIS Thirty-seven studies (1991 patients) were included. We found no randomised trial. The primary analysis revealed a large treatment effect in favour of antiplatelets for preventing the primary composite outcome of ischaemic stroke, intracranial haemorrhage or death within the first 3 months after treatment initiation (relative risk 0.32, 95% credibility interval 0.12 to 0.63), while the degree of between-study heterogeneity was moderate (τ(2) = 0.18). In an analysis restricted to studies of higher methodological quality, the possible advantage of antiplatelets over anticoagulants was less obvious than in the main analysis (relative risk 0.73, 95% credibility interval 0.17 to 2.30). CONCLUSION In view of these results and the safety advantages, easier usage and lower cost of antiplatelets, we conclude that antiplatelets should be given precedence over anticoagulants as a first line treatment in patients with cervical artery dissection unless results of an adequately powered randomised trial suggest the opposite.
Resumo:
Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.
Resumo:
HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.
Resumo:
Abstract. Ancient Lake Ohrid is a steep-sided, oligotrophic, karst lake that was tectonically formed most likely within the Pliocene and often referred to as a hotspot of endemic biodiversity. This study aims on tracing significant lake level fluctuations at Lake Ohrid using high-resolution acoustic data in combination with lithological, geochemical, and chronological information from two sediment cores recovered from sub-aquatic terrace levels at ca. 32 and 60m water depth. According to our data, significant lake level fluctuations with prominent lowstands of ca. 60 and 35m below the present water level occurred during Marine Isotope Stage (MIS) 6 and MIS 5, respectively. The effect of these lowstands on biodiversity in most coastal parts of the lake is negligible, due to only small changes in lake surface area, coastline, and habitat. In contrast, biodiversity in shallower areas was more severely affected due to disconnection of today sublacustrine springs from the main water body. Multichannel seismic data from deeper parts of the lake clearly image several clinoform structures stacked on top of each other. These stacked clinoforms indicate significantly lower lake levels prior to MIS 6 and a stepwise rise of water level with intermittent stillstands since its existence as water-filled body, which might have caused enhanced expansion of endemic species within Lake Ohrid.
Resumo:
Multimodality – the interdependence of semiotic resources in text – is an existential element of today’s media. The term multimodality attends systematically to the social interpretation of a wide range of communicational forms used in meaning making. A primary focus of social- semiotic multimodal analysis is on mapping how modal resources are used by people in a given social context. In November 2012 the “Ola ke ase” catchphrase, which is a play on “Hola ¿qué hace?”, appeared for the first time in Spain and immediately has been adopted as a Twitter hashtag and an image macro series. Its viral spread on social networks has been tremendous, being a trending topic in various Spanish-speaking countries. The objective of analysis is how language and image work together in the “Ola ke ase” meme. The interplay between text and image in one of the original memes and some of its variations is quantitatively analysed applying a social-semiotic approach. Results demonstrate how the “Ola ke ase” meme functions through its multimodal character and the non-standard orthography. The spread of uncountable variations of the meme shows the social process that goes on in the meaning making of the semiotic elements.