52 resultados para heart rate variability
Resumo:
STUDY OBJECTIVES: Periodic leg movements in sleep (PLMS) are frequently accompanied by arousals and autonomic activation, but the pathophysiologic significance of these manifestations is unclear. DESIGN: Changes in heart rate variability (HRV), HRV spectra, and electroencephalogram (EEG) spectra associated with idiopathic PLMS were compared with changes associated with isolated leg movements and respiratory-related leg movements during sleep. Furthermore, correlations between electromyographic activity, HRV changes, and EEG changes were assessed. SETTING: Sleep laboratory. PATIENTS: Whole-night polysomnographic studies of 24 subjects fulfilling the criteria of either periodic leg movements disorder (n = 8), obstructive sleep apnea syndrome (n = 7), or normal polysomnography (n = 9) were used. MEASUREMENTS AND RESULTS: Spectral HRV changes started before all EEG changes and up to 6 seconds before the onset of all types of leg movements. An initial weak autonomic activation was followed by a sympathetic activation, an increase of EEG delta activity, and finally a progression to increased higher-frequency EEG rhythms. After movement onset, HRV indicated a vagal activation, and, the EEG, a decrease in spindle activity. Sympathetic activation, as measured by HRV spectra, was greater for PLMS than for all other movement types. In EEG, gamma synchronization began 1 to 2 seconds earlier for isolated leg movements and respiratory-related leg movements than for PLMS. Significant correlations were found between autonomic activations and electromyographic activity, as well as between autonomic activations and EEG delta activity, but not between higher-frequency EEG rhythms and EMG activity or HRV changes. CONCLUSIONS: These results suggest a primary role of the sympathetic nervous system in the generation of PLMS.
Resumo:
BACKGROUND: Although yawning is a ubiquitous and phylogenetically old phenomenon, its origin and purpose remain unclear. The study aimed at testing the widely held hypothesis that yawning is triggered by drowsiness and brings about a reversal or suspension of the process of falling asleep. METHODS: Subjects complaining of excessive sleepiness were spontaneously yawning while trying to stay awake in a quiet and darkened room. Changes in their electroencephalogram (EEG) and heart rate variability (HRV) associated with yawning were compared to changes associated with isolated voluntary body movements. Special care was taken to remove eye blink- and movement-artefacts from the recorded signals. RESULTS: Yawns were preceded and followed by a significantly greater delta activity in EEG than movements (p< or =0.008). After yawning, alpha rhythms were attenuated, decelerated, and shifted towards central brain regions (p< or =0.01), whereas after movements, they were attenuated and accelerated (p<0.02). A significant transient increase of HRV occurred after the onset of yawning and movements, which was followed by a significant slow decrease peaking 17s after onset (p<0.0001). No difference in HRV changes was found between yawns and movements. CONCLUSIONS: Yawning occurred during periods with increased drowsiness and sleep pressure, but was not followed by a measurable increase of the arousal level of the brain. It was neither triggered nor followed by a specific autonomic activation. Our results therefore confirm that yawns occur due to sleepiness, but do not provide evidence for an arousing effect of yawning.
Resumo:
Obese persons suffer from an increased mortality risk supposedly due to cardiovascular disorders related to either continuously lowered parasympathetic or altered sympathetic activation. Our cross-sectional correlation study establishes the relationship between obesity and autonomic regulation as well as salivary cortisol levels. Three patient cohorts were sampled, covering ranges of body mass index (BMI) of 27-32 (n=17), 33-39 (n=13) and above 40 kg/m(2)(n=12), and stratified for age, sex and menopausal status. Autonomic cardiovascular regulation was assessed by use of heart rate variability and continuous blood pressure recordings. Spectral analytical calculation (discrete Fourier transformation) yields indices of sympathetic and parasympathetic activation and baroreflex sensitivity. Morning salivary cortisol was concurrently collected. Contrary to expectation, BMI and waist/hip ratio (WHR) were inversely correlated with sympathetic activity. This was true for resting conditions (r=-0.48, P<0.001; r=-0.33, P<0.05 for BMI and WHR respectively) and for mental challenge (r=-0.42, P<0.01 for BMI). Resting baroreflex sensitivity was strongly related to the degree of obesity at rest (BMI: r=-0.35, P<0.05) and for mental challenge (r=-0.53, P<0.001). Salivary cortisol correlated significantly with waist circumference (r=-0.34, P=0.05). With increasing weight, no overstimulation was found but a depression in sympathetic and parasympathetic activity together with a significant reduction in baroreflex functioning and in salivary cortisol levels.
Resumo:
BACKGROUND: Exposure to intermittent magnetic fields of 16 Hz has been shown to reduce heart rate variability, and decreased heart rate variability predicts cardiovascular mortality. We examined mortality from cardiovascular causes in railway workers exposed to varying degrees to intermittent 16.7 Hz magnetic fields. METHODS: We studied a cohort of 20,141 Swiss railway employees between 1972 and 2002, including highly exposed train drivers (median lifetime exposure 120.5 muT-years), and less or little exposed shunting yard engineers (42.1 muT-years), train attendants (13.3 muT-years) and station masters (5.7 muT-years). During 464,129 person-years of follow up, 5,413 deaths were recorded and 3,594 deaths were attributed to cardio-vascular diseases. We analyzed data using Cox proportional hazards models. RESULTS: For all cardiovascular mortality the hazard ratio compared to station masters was 0.99 (95%CI: 0.91, 1.08) in train drivers, 1.13 (95%CI: 0.98, 1.30) in shunting yard engineers, and 1.09 (95%CI: 1.00, 1.19) in train attendants. Corresponding hazard ratios for arrhythmia related deaths were 1.04 (95%CI: 0.68, 1.59), 0.58 (95%CI: 0.24, 1.37) and 10 (95%CI: 0.87, 1.93) and for acute myocardial infarction 1.00 (95%CI: 0.73, 1.36), 1.56 (95%CI: 1.04, 2.32), and 1.14 (95%CI: 0.85, 1.53). The hazard ratio for arrhythmia related deaths per 100 muT-years of cumulative exposure was 0.94 (95%CI: 0.71, 1.24) and 0.91 (95%CI: 0.75, 1.11) for acute myocardial infarction. CONCLUSION: This study provides evidence against an association between long-term occupational exposure to intermittent 16.7 Hz magnetic fields and cardiovascular mortality.
Resumo:
BACKGROUND: The link between decreased heart rate variability (HRV) and atherosclerosis progression is elusive. We hypothesized that reduced HRV relates to increased levels of prothrombotic factors previously shown to predict coronary risk. METHODS: We studied 257 women (aged 56 +/- 7 years) between 3 and 6 months after an acute coronary event and obtained very low frequency (VLF), low frequency (LF), and high frequency (HF) power, and LF/HF ratio from 24-hour ambulatory ECG recordings. Plasma levels of activated clotting factor VII (FVIIa), fibrinogen, von Willebrand factor antigen (VWF:Ag), and plasminogen activator inhibitor-1 (PAI-1) activity were determined, and their levels were aggregated into a standardized composite index of prothrombotic activity. RESULTS: In bivariate analyses, all HRV indices were inversely correlated with the prothrombotic index explaining between 6% and 14% of the variance (p < 0.001). After controlling for sociodemographic factors, index event, menopausal status, cardiac medication, lifestyle factors, self-rated health, metabolic variables, and heart rate, VLF power, LF power, and HF power explained 2%, 5%, and 3%, respectively, of the variance in the prothrombotic index (p < 0.012). There were also independent relationships between VLF power and PAI-1 activity, between LF power and fibrinogen, VWF:Ag, and PAI-1 activity, between HF power and FVIIa and fibrinogen, and between the LF/HF power ratio and PAI-1 activity, explaining between 2% and 3% of the respective variances (p < 0.05). CONCLUSIONS: Decreased HRV was associated with prothrombotic changes partially independent of covariates. Alteration in autonomic function might contribute to prothrombotic activity in women with coronary artery disease (CAD).
Resumo:
In patients with drug-resistant hypertension, chronic electric stimulation of the carotid baroreflex is an investigational therapy for blood pressure reduction. We hypothesized that changes in cardiac autonomic regulation can be demonstrated in response to chronic baroreceptor stimulation, and we analyzed the correlation with blood pressure changes. Twenty-one patients with drug-resistant hypertension were prospectively included in a substudy of the Device Based Therapy in Hypertension Trial. Heart rate variability and heart rate turbulence were analyzed using 24-hour ECG. Recordings were obtained 1 month after device implantation with the stimulator off and after 3 months of chronic electric stimulation (stimulator on). Chronic baroreceptor stimulation decreased office blood pressure from 185+/-31/109+/-24 mm Hg to 154+/-23/95+/-16 mm Hg (P<0.0001/P=0.002). Mean heart rate decreased from 81+/-11 to 76+/-10 beats per minute(-1) (P=0.001). Heart rate variability frequency-domain parameters assessed using fast Fourier transformation (FFT; ratio of low frequency:high frequency: 2.78 versus 2.24 for off versus on; P<0.001) were significantly changed during stimulation of the carotid baroreceptor, and heart rate turbulence onset was significantly decreased (turbulence onset: -0.002 versus -0.015 for off versus on; P=0.004). In conclusion, chronic baroreceptor stimulation causes sustained changes in heart rate variability and heart rate turbulence that are consistent with inhibition of sympathetic activity and increase of parasympathetic activity in patients with drug-resistant systemic hypertension; these changes correlate with blood pressure reduction. Whether the autonomic modulation has favorable cardiovascular effects beyond blood pressure control should be investigated in further studies.
Resumo:
BACKGROUND: Elevated plasma fibrinogen levels have prospectively been associated with an increased risk of coronary artery disease in different populations. Plasma fibrinogen is a measure of systemic inflammation crucially involved in atherosclerosis. The vagus nerve curtails inflammation via a cholinergic antiinflammatory pathway. We hypothesized that lower vagal control of the heart relates to higher plasma fibrinogen levels. METHODS: Study participants were 559 employees (age 17-63 years; 89% men) of an airplane manufacturing plant in southern Germany. All subjects underwent medical examination, blood sampling, and 24-hour ambulatory heart rate recording while kept on their work routine. The root mean square of successive differences in RR intervals during the night period (nighttime RMSSD) was computed as the heart rate variability index of vagal function. RESULTS: After controlling for demographic, lifestyle, and medical factors, nighttime RMSSD explained 1.7% (P = 0.001), 0.8% (P = 0.033), and 7.8% (P = 0.007), respectively, of the variance in fibrinogen levels in all subjects, men, and women. Nighttime RMSSD and fibrinogen levels were stronger correlated in women than in men. In all workers, men, and women, respectively, there was a mean +/- SEM increase of 0.41 +/- 0.13 mg/dL, 0.28 +/- 0.13 mg/dL, and 1.16 +/- 0.41 mg/dL fibrinogen for each millisecond decrease in nighttime RMSSD. CONCLUSIONS: Reduced vagal outflow to the heart correlated with elevated plasma fibrinogen levels independent of the established cardiovascular risk factors. This relationship seemed comparably stronger in women than men. Such an autonomic mechanism might contribute to the atherosclerotic process and its thrombotic complications.
Resumo:
Aim: Increased rates of hospitalization due to cardiovascular events have been reported during phases of World Soccer Championships (WSC). The purpose of this pilot study was to explore acute psychological and physiological effects of watching a live broadcast soccer game during the WSC 2006. Methods: Seven male supporters (age: M=24; SD=2.7) of the Swiss National Soccer Team watched a game of their team in a controlled laboratory setting. Heart rate (HR), heart rate variability (HRV), salivary cortisol, alpha-amylase (sAA), and testosterone concentrations, as well as several mood ratings were captured repeatedly before, during, and after the game. Results: Subjects reported feeling stressed, and HR and sAA activity showed an increase during the game. In contrast, HRV, cortisol and testosterone were unaffected. Conclusion: Watching a sports competition seems to specifically affect the sympathetic nervous system, which can be measured by sensitive electrocardiographic and salivary markers.
Resumo:
AIM: To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. METHODS: Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. RESULTS: Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m2). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P < 0.05). Muscular relaxation after verum SR-WBV was higher than at baseline and after sham SR-WBV (all P < 0.05). During verum SR-WBV the levels of HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P < 0.001). Skin redness showed significant changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover, muscle relaxation after verum SR-WBV was higher than after sham SR-WBV (P < 0.05). CONCLUSION: Verum SR-WBV stimulated musculoskeletal activity in young healthy individuals while cardiovascular activation was low. Training of musculoskeletal capacity and immediate increase in musculoskeletal relaxation are potential mediators of pain reduction in preventive trials.
Resumo:
Manure scrapers are widely used in dairy cow loose-housing systems. In order to evaluate the effects of the scrapers on the cows, we assessed their impact on the animals' cardiac activity, feeding behaviour, and the behavioural reactions of cows confronted with different types of scrapers. In part I of the study, we measured cardiac activity (mean R–R interval and RMSSD, a parameter of heart-rate variability) whilst observing the behaviour of 29 focal cows on three farms during situations with and without active manure scrapers. Lower RMSSD values were observed during scraping events while cows were either lying, standing or walking in the alleyway, standing completely in the lying cubicle, or standing half in the lying cubicle (P=0.03), but only tended to differ while directly confronted with the scraper (P=0.06). This indicates that dairy cows experienced at least some mild stress during manure-scraping events. In part II, the feeding behaviour of 12 cows on each of two farms was recorded by means of a jaw-movement sensor and compared between situations with the manure-scraping event following forage provision either within or outside the main daily feeding period (i.e. within 1 or after 2 h from forage provisioning, respectively). The duration of night-time feeding (P=0.049) and the number of feeding bouts (P=0.036) were higher when a manure-scraping event took place within the main daily feeding period, indicating that the cows' feeding behaviour had been disturbed. In part III, we observed the cows' behaviour on 15 farms during eight manure scraping events per farm, where each of five farms had one of three different scraper types. We assessed the cows' immediate reactions when confronted with the scraper. In addition, we recorded the number of animals present in the alleyways before and after the manure-scraping events. The more cows that were present in the alleyways before the scraping event, the lower the proportion of cows showing direct behavioural reactions both with (P=0.017) and without (P=0.028) scraper contact, and the higher the number of cows that left the alleyways (P<0.001). Scraper type did not influence the proportion of cows showing behavioural reactions. In conclusion, our results show that dairy cows perceive the manure-scraping event negatively in some situations, that feeding behaviour may be disturbed when scrapers are active during the main feeding period, and that cows avoid the scraper during crowded situations.
Resumo:
Heart rate and breathing rate fluctuations represent interacting physiological oscillations. These interactions are commonly studied using respiratory sinus arrhythmia (RSA) of heart rate variability (HRV) or analyzing cardiorespiratory synchronization. Earlier work has focused on a third type of relationship, the temporal ratio of respiration rate and heart rate (HRR). Each method seems to reveal a specific aspect of cardiorespiratory interaction and may be suitable for assessing states of arousal and relaxation of the organism. We used HRR in a study with 87 healthy subjects to determine the ability to relax during 5 day-resting periods in comparison to deep sleep relaxation. The degree to which a person during waking state could relax was compared to somatic complaints, health-related quality of life, anxiety and depression. Our results show, that HRR is barely connected to balance (LF/HF) in HRV, but significantly correlates to the perception of general health and mental well-being as well as to depression. If relaxation, as expressed in HRR, during day-resting is near to deep sleep relaxation, the subjects felt healthier, indicated better mental well-being and less depressive moods.
Resumo:
Objective: The quality of teamwork depends not only on communication skills but also on team familiarity and hierarchical structures. The aim of the present study is to evaluate the physiological impact of close teamwork between senior and junior surgeons performing elective open abdominal surgery for six months in stable teams. Methods: Physiological measurements of the main and junior surgeons were taken in a total of 40 procedures. Cumulative stress was assessed by the mea- surements of urine catecholamines (Adrenaline, Noradrenaline, Dopamine, Metanephrine, Normetanephrine). Heart rate variability was measured to assess temporal aspects of stress. The procedures were observed by a trained team of work psychologists. Direct observations of distractors, team inter- actions and communication were performed. Specific questionnaires were filled by members of the surgical team that include surgeons, nurses and anesthetists. Results: In junior surgeons, physiological stress is reduced over a period of close collaboration. Case-related communication is not stressful. However, tension within the surgical team is associated with increased levels of cat- echolamine in the urine of the senior surgeon. The difficulty of the oper- ation impacts on heart-rate variability of the junior but not of the senior surgeon. Conclusion: Junior surgeons may require months of teamwork within one stable team in order to reduce levels of physiological stress. Senior surgeons are more resistant to stressful clinical situations compared to junior surgeons but are vulnerable to tension within the surgical team.
Resumo:
The success rate in the development of psychopharmacological compounds is insufficient. Two main reasons for failure have been frequently identified: 1) treating the wrong patients and 2) using the wrong dose. This is potentially based on the known heterogeneity among patients, both on a syndromal and a biological level. A focus on personalized medicine through better characterization with biomarkers has been successful in other therapeutic areas. Nevertheless, obstacles toward this goal that exist are 1) the perception of a lack of validation, 2) the perception of an expensive and complicated enterprise, and 3) the perception of regulatory hurdles. The authors tackle these concerns and focus on the utilization of biomarkers as predictive markers for treatment outcome. The authors primarily cover examples from the areas of major depression and schizophrenia. Methodologies covered include salivary and plasma collection of neuroendocrine, metabolic, and inflammatory markers, which identified subgroups of patients in the Netherlands Study of Depression and Anxiety. A battery of vegetative markers, including sleep-electroencephalography parameters, heart rate variability, and bedside functional tests, can be utilized to characterize the activity of a functional system that is related to treatment refractoriness in depression (e.g., the renin-angiotensin-aldosterone system). Actigraphy and skin conductance can be utilized to classify patients with schizophrenia and provide objective readouts for vegetative activation as a functional marker of target engagement. Genetic markers, related to folate metabolism, or folate itself, has prognostic value for the treatment response in patients with schizophrenia. Already, several biomarkers are routinely collected in standard clinical trials (e.g., blood pressure and plasma electrolytes), and appear to be differentiating factors for treatment outcome. Given the availability of a wide variety of markers, the further development and integration of such markers into clinical research is both required and feasible in order to meet the benefit of personalized medicine. This article is based on proceedings from the "Taking Personalized Medicine Seriously-Biomarker Approaches in Phase IIb/III Studies in Major Depression and Schizophrenia" session, which was held during the 10th Annual Scientific Meeting of the International Society for Clinical Trials Meeting (ISCTM) in Washington, DC, February 18 to 20, 2014.
Resumo:
In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF.
Resumo:
Aims Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs. Methods and Results Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01). Conclusion Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation.