74 resultados para hand pollination
Resumo:
The optimal testing position for hand grip strength, which is a useful functional measure of nutritional status, is open to debate. We therefore examined the systematic difference between different postures in order to establish a methodology that is clinically relevant, easy to perform and reproducible.
Treatment of open hand injuries: does timing of surgery matter? A single-centre prospective analysis
Resumo:
OBJECTIVES Sonographic guidance for peripheral nerve anesthesia has proven increasingly successful in clinical practice; however, fears that a change to sonographically guided regional anesthesia may impair the block quality and operating room work flow persist in certain units. In this retrospective cohort study, block quality and patient satisfaction during the transition period from nerve stimulator to sonographic guidance for axillary brachial plexus anesthesia in a tertiary referral center were investigated. METHODS Anesthesia records of all patients who had elective surgery of the wrist or hand during the transition time (September 1, 2006-August 25, 2007) were reviewed for block success, placement time, anesthesiologist training level, local anesthetic volume, and requirement of additional analgesics. Postoperative records were reviewed, and patient satisfaction was assessed by telephone interviews in matched subgroups. RESULTS Of 415 blocks, 341 were sonographically guided, and 74 were nerve stimulator guided. Sonographically guided blocks were mostly performed by novices, whereas nerve stimulator-guided blocks were performed by advanced users (72.3% versus 14%; P < .001). Block performance times and success rates were similar in both groups. In sonographically guided blocks, significantly less local anesthetics were applied compared to nerve stimulator-guided blocks (mean ± SD, 36.1 ± 7.1 versus 43.9 ± 6.1 mL; P< .001), and less opioids were required (fentanyl, 66.1 ± 30 versus 90 ± 62 μg; P< .001). Interviewed patients reported significantly less procedure-related discomfort, pain, and prolonged procedure time when block placement was sonographically guided (2% versus 20%; P = .002). CONCLUSIONS Transition from nerve stimulator to sonographic guidance for axillary brachial plexus blocks did not change block performance times or success rates. Patient satisfaction was improved even during the early institutional transition period.
Resumo:
CASE DESCRIPTION A 7-year-old 573-kg (1,261 -lb) Swiss Warmblood gelding was evaluated because of signs of acute abdominal pain. CLINICAL FINDINGS Physical examination revealed a markedly distended abdomen with subjectively reduced borborygmi in all abdominal quadrants. A large, gas-distended viscus was present at the pelvic brim preventing complete palpation of the abdomen per rectum. Ultrasonographic evaluation could not be safely performed in the initial evaluation because of severe signs of abdominal pain. TREATMENT AND OUTCOME Ventral midline celiotomy was performed, and right dorsal displacement of the ascending colon was corrected. Progressive signs of abdominal pain after surgery prompted repeat ventral midline celiotomy, and small intestinal incarceration in a large, radial mesojejunal rent was detected. The incarceration was reduced, but the defect was not fully accessible for repair via the celiotomy. Repair of the mesenteric defect was not attempted, and conservative management was planned after surgery; however, signs of colic returned. A standard laparoscopic approach was attempted from both flanks in the standing patient, but the small intestine could not be adequately mobilized for full evaluation of the rent. Hand-assisted laparoscopic surgery (HALS) allowed identification and reduction of jejunal incarceration and repair of the mesenteric rent. Although minor ventral midline incisional complications were encountered, the horse recovered fully. CLINICAL RELEVANCE HALS techniques should be considered for repair of mesenteric rents in horses. In the horse of this report, HALS facilitated identification, evaluation, and repair of a large radial mesenteric rent that was not accessible from a ventral median celiotomy.
Resumo:
The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.
Resumo:
Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services.We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant’s need for con-specific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators’ habitat requirements and flower visita-tion. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service.
Resumo:
BACKGROUND Bodily sensations are an important component of corporeal awareness. Spinal cord injury can leave affected body parts insentient and unmoving, leading to specific disturbances in the mental representation of one's own body and the sense of self. OBJECTIVE Here, we explored how illusions induced by multisensory stimulation influence immediate sensory signals and tactile awareness in patients with spinal cord injuries. METHODS The rubber hand illusion paradigm was applied to 2 patients with chronic and complete spinal cord injury of the sixth cervical spine, with severe somatosensory impairments in 2 of 5 fingers. RESULTS Both patients experienced a strong illusion of ownership of the rubber hand during synchronous, but not asynchronous, stroking. They also, spontaneously reported basic tactile sensations in their previously numb fingers. Tactile awareness from seeing the rubber hand was enhanced by progressively increasing the stimulation duration. CONCLUSIONS Multisensory illusions directly and specifically modulate the reemergence of sensory memories and enhance tactile sensation, despite (or as a result of) prior deafferentation. When sensory inputs are lost, and are later illusorily regained, the brain updates a coherent body image even several years after the body has become permanently unable to feel. This particular example of neural plasticity represents a significant opportunity to strengthen the sense of the self and the feelings of embodiment in patients with spinal cord injury.
Resumo:
Eine rechte Hand unterscheidet sich von einer linken Hand. Diese bekannte Tatsache hat nach Kant philosophische Implikationen: Sie bringt den sog. Relationalismus in Schwierigkeiten. Dieser sieht den Raum als Inbegriff räumlicher Beziehungen zwischen materiellen Gegenständen. Für Kant kann der Relationalismus nun nicht zwischen linken und rechten Händen unterscheiden. Aber stimmt das wirklich? Und wie ist der Relationalismus vor dem Hintergrund der modernen Physik zu beurteilen? Der Vortrag entfaltet ausgehend von Kants Überlegungen zur Händigkeit die Debatte um den Relationalismus.
Resumo:
Preclinical studies using animal models have shown that grey matter plasticity in both perilesional and distant neural networks contributes to behavioural recovery of sensorimotor functions after ischaemic cortical stroke. Whether such morphological changes can be detected after human cortical stroke is not yet known, but this would be essential to better understand post-stroke brain architecture and its impact on recovery. Using serial behavioural and high-resolution magnetic resonance imaging (MRI) measurements, we tracked recovery of dexterous hand function in 28 patients with ischaemic stroke involving the primary sensorimotor cortices. We were able to classify three recovery subgroups (fast, slow, and poor) using response feature analysis of individual recovery curves. To detect areas with significant longitudinal grey matter volume (GMV) change, we performed tensor-based morphometry of MRI data acquired in the subacute phase, i.e. after the stage compromised by acute oedema and inflammation. We found significant GMV expansion in the perilesional premotor cortex, ipsilesional mediodorsal thalamus, and caudate nucleus, and GMV contraction in the contralesional cerebellum. According to an interaction model, patients with fast recovery had more perilesional than subcortical expansion, whereas the contrary was true for patients with impaired recovery. Also, there were significant voxel-wise correlations between motor performance and ipsilesional GMV contraction in the posterior parietal lobes and expansion in dorsolateral prefrontal cortex. In sum, perilesional GMV expansion is associated with successful recovery after cortical stroke, possibly reflecting the restructuring of local cortical networks. Distant changes within the prefrontal-striato-thalamic network are related to impaired recovery, probably indicating higher demands on cognitive control of motor behaviour.
Resumo:
Animal-mediated pollination is essential in the reproductive biology of many flowering plants and tends to be associated with pollination syndromes, sets of floral traits that are adapted to particular groups of pollinators. The complexity and functional convergence of various traits within pollination syndromes are outstanding examples of biological adaptation, raising questions about their mechanisms and origins. In the genus Petunia, complex pollination syndromes are found for nocturnal hawkmoths (P. axillaris) and diurnal bees (P. integrifolia), with characteristic differences in petal color, corolla shape, reproductive organ morphology, nectar quantity, nectar quality, and fragrance. We dissected the Petunia syndromes into their most important phenotypic and genetic components. They appear to include several distinct differences, such as cell-growth and cell-division patterns in the basal third of the petals, elongation of the ventral stamens, nectar secretion and nectar sugar metabolism, and enzymatic differentiation in the phenylpropanoid pathway. In backcross-inbred lines of species-derived chromosome segments in a transposon tagging strain of P. hybrida, one to five quantitative trait loci were identified for each syndrome component. Two loci for stamen elongation and nectar volume were confirmed in introgression lines and showed large allelic differences. The combined data provide a framework for a detailed understanding of floral syndromes from their developmental and molecular basis to their impact on animal behavior. With its molecular genetic tools, this Petunia system provides a novel venue for a pattern of adaptive radiation that is among the most characteristic of flowering plants.