65 resultados para guanine nucleotide binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The early diagnosis of acute myocardial infarction (AMI) very soon after symptom onset remains a major clinical challenge, even when using high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS We investigated the incremental value of heart-type fatty acid-binding protein (hFABP) in a pre-specified subgroup analysis of patients presenting with suspected AMI within 1 h of symptom onset to the emergency department (ED) in a multicentre study. HFABP was measured in a blinded fashion. Two independent cardiologists using all available clinical information, including hs-cTnT, adjudicated the final diagnosis. Overall, 1411 patients were enrolled, of whom 105 patients presented within 1 h of symptom onset. Of these, 34 patients (32.4%) had AMI. The diagnostic accuracy as quantified by the area under the receiver-operating characteristics curve (AUC) of hFABP was high (0.84 (95% CI 0.74-0.94)). However, the additional use of hFABP only marginally increased the diagnostic accuracy of hs-cTnT (AUC 0.88 (95% CI 0.81-0.94) for hs-cTnT alone to 0.90 (95% CI 0.83-0.98) for the combination; p=ns). After the exclusion of 18 AMI patients with ST-segment elevation, similar results were obtained. Among the 16 AMI patients without ST-segment elevation, six had normal hs-cTnT at presentation. Of these, hFABP was elevated in two (33.3%) patients. CONCLUSIONS hFABP does not seem to significantly improve the early diagnostic accuracy of hs-cTnT in the important subgroup of patients with suspected AMI presenting to the ED very early after symptom onset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3' ends of animal replication-dependent histone mRNAs are formed by endonucleolytic cleavage of the primary transcripts downstream of a highly conserved RNA hairpin. The hairpin-binding protein (HBP) binds to this RNA element and is involved in histone RNA 3' processing. A minimal RNA-binding domain (RBD) of approximately 73 amino acids that has no similarity with other known RNA-binding motifs was identified in human HBP [Wang Z-F et al., Genes & Dev, 1996, 10:3028-3040]. The primary sequence identity between human and Caenorhabditis elegans RBDs is 55% compared to 38% for the full-length proteins. We analyzed whether differences between C. elegans and human HBP and hairpins are reflected in the specificity of RNA binding. The C. elegans HBP and its RBD recognize only their cognate RNA hairpins, whereas the human HBP or RBD can bind both the mammalian and the C. elegans hairpins. This selectivity of C. elegans HBP is mostly mediated by the first nucleotide in the loop, which is C in C. elegans and U in all other metazoans. By converting amino acids in the human RBD to the corresponding C. elegans residues at places where the latter deviates from the consensus, we could identify two amino acid segments that contribute to selectivity for the first nucleotide of the hairpin loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transitory binding between photoactivated rhodopsin (Rho* or Meta II) and the G protein transducin (Gt-GDP) is the first step in the visual signaling cascade. Light causes photoisomerization of the 11-cis-retinylidene chromophore in rhodopsin (Rho) to all-trans-retinylidene, which induces conformational changes that allow Gt-GDP to dock onto the Rho* surface. GDP then dissociates from Gt, leaving a transient nucleotide-empty Rho*-Gt(e) complex before GTP becomes bound, and Gt-GTP then dissociates from Rho*. Further biochemical advances are required before structural studies of the various Rho*-Gt complexes can be initiated. Here, we describe the isolation of n-dodecyl-beta-maltoside solubilized, stable, functionally active, Rho*-Gt(e), Rho(e)*-Gt(e), and 9-cis-retinal/11-cis-retinal regenerated Rho-Gt(e) complexes by sucrose gradient centrifugation. In these complexes, Rho* spectrally remained in its Meta II state, and Gt(e) retained its ability to interact with GTPgammaS. Removal of all-trans-retinylidene from Rho*-Gt(e) had no effect on the stability of the Rho(e)*-Gt(e) complex. Moreover, opsin in the Rho(e)*-Gt(e) complex with an empty nucleotide-binding pocket in Gt and an empty retinoid-binding pocket in Rho was regenerated up to 75% without complex dissociation. These results indicate that once Rho* couples with Gt, the chromophore plays a minor role in stabilizing this complex. Moreover, in complexes regenerated with 9-cis-retinal/11-cis-retinal, Rho retains a conformation similar to Rho* that is stabilized by Gt(e) apo-protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unfolded protein response (UPR) is triggered by the accumulation of misfolded proteins within the endoplasmic reticulum (ER). The role of the UPR during leukemogenesis is unknown so far. Here, we studied the induction of mediators of the UPR in leukaemic cells of AML patients. Increased expression of the spliced variant of the X-box binding protein 1 (XBP1s) was detected in 17.4% (16 of 92) of AML patients. Consistent with activated UPR, this group also had increased expression of ER-resident chaperones such as the 78 kD glucose-regulated protein (GRP78) and of calreticulin. Conditional expression of calreticulin in leukaemic U937 cells was found to increase calreticulin binding to the CEBPA mRNA thereby efficiently blocking translation of the myeloid key transcription factor CEBPA and ultimately affecting myeloid differentiation. Consequently, leukaemic cells from AML patients with activated UPR and thus increased calreticulin levels showed in fact suppressed CEBPA protein expression. We identified two functional ER stress response elements (ERSE) in the calreticulin promoter. The presence of NFY and ATF6, as well as an intact binding site for YY1 within these ERSE motifs were essential for mediating sensitivity to ER stress and activation of calreticulin. Thus, we propose a model of the UPR being activated in a considerable subset of AML patients through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CCAAT/enhancer binding protein-α (CEBPA) mutations in acute myeloid leukemia (AML) patients with a normal karyotype (NK) confer favorable prognosis, whereas NK-AML patients per se are of intermediate risk. This suggests that blocked CEBPA function characterizes NK-AML with favorable outcome. We determined the prognostic significance of CEBPA DNA binding function by enzyme-linked immunosorbent assay in 105 NK-AML patients. Suppressed CEBPA DNA binding was defined by 21 good-risk AML patients with inv(16) or t(8;21) (both abnormalities targeting CEBPA) and 8 NK-AML patients with dominant-negative CEBPA mutations. NK-AML patients with suppressed CEBPA function showed a better overall survival (P = .0231) and disease-free survival (P = .0069) than patients with conserved CEBPA function. Suppressed CEBPA DNA binding was an independent marker for better overall survival and disease-free survival in a multivariable analysis that included FLT3-ITD, NPM1 and CEBPA mutation status, white blood cell count, age and lactate dehydrogenase. These data indicate that suppressed CEBPA function is associated with favorable prognosis in NK-AML patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is accumulating evidence for the involvement of the unfolded protein response (UPR) in the pathogenesis of many tumor types in humans. This is particularly the case in rapidly growing solid tumors in which the demand for oxygen and nutrients can exceed the supply until new tumor-initiated blood vessels are formed. In contrast, the role of the UPR during leukemogenesis remains largely unknown. Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of somatic mutations in hematopoietic progenitor cells that alter the physiological regulation of self-renewal, survival, proliferation, or differentiation. The CCAAT/enhancer-binding protein alpha (CEBPA) gene is a key myeloid transcription factor and a frequent target for disruption in AML. In particular, translation of CEBPA mRNA can be specifically blocked by binding of the chaperone calreticulin (CALR), a well-established effector of the UPR, to a stem loop structure within the 5' region of the CEBPA mRNA. The relevance of this mechanism was first elucidated in certain AML subtypes carrying the gene rearrangements t(3;21) or inv(16). In our recent work, we could demonstrate the induction of key effectors of the UPR in leukemic cells of AML patients comprising all subtypes (according to the French-American-British (FAB) classification for human AML). The formation of the spliced variant of the X-box binding protein (XBP1s) was detectable in 17.4% (17 of 105) of AML patients. Consistent with an activated UPR, this group had significantly increased expression of the UPR target genes CALR, the 78 kDa glucose-regulated protein (GRP78), and the CCAAT/enhancer-binding protein homologous protein (CHOP). Consistently, in vitro studies confirmed that calreticulin expression was upregulated via activation of the ATF6 pathway in myeloid leukemic cells. As a consequence, CEBPA protein expression was inhibited in vitro as well as in leukemic cells from patients with activated UPR. We therefore propose a model of the UPR being involved in leukemogenesis through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation and cell-cycle deregulation which represent key features of the leukemic phenotype. From a more clinical point of view, the presence of activated UPR in AML patient samples was found to be associated with a favorable disease course.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The histidine triad (HIT) superfamily comprises proteins that share the histidine triad motif, His-ϕ-His-ϕ-His-ϕ-ϕ, where ϕ is a hydrophobic amino acid. HIT proteins are ubiquitous in prokaryotes and eukaryotes. HIT proteins bind nucleotides and exert dinucleotidyl hydrolase, nucleotidylyl transferase or phosphoramidate hydrolase enzymatic activity. In humans, 5 families of HIT proteins are recognized. The accumulated epidemiological and experimental evidence indicates that two branches of the superfamily, the HINT (Histidine Triad Nucleotide Binding) members and FHIT (Fragile Histidine Triad), have tumor suppressor properties but a conclusive physiological role can still not be assigned to these proteins. Aprataxin forms another discrete branch of the HIT superfamily, is implicated in DNA repair mechanisms and unlike the HINT and FHIT members, a defective protein can be conclusively linked to a disease, ataxia with oculomotor apraxia type 1. The scavenger mRNA decapping enzyme, DcpS, forms a fourth branch of the HIT superfamily. Finally, the GalT enzymes, which exert specific nucleoside monophosphate transferase activity, form a fifth branch that is not implicated in tumorigenesis. The molecular mechanisms by which the HINT and FHIT proteins participate in bioenergetics of cancer are just beginning to be unraveled. Their purported actions as tumor suppressors are highlighted in this review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligands of the benzodiazepine binding site of the GABA(A) receptor come in three flavors: positive allosteric modulators, negative allosteric modulators and antagonists all of which can bind with high affinity. The GABA(A) receptor is a pentameric protein which forms a chloride selective ion channel and ligands of the benzodiazepine binding site stabilize three different conformations of this protein. Classical benzodiazepines exert a positive allosteric effect by increasing the apparent affinity of channel opening by the agonist γ-aminobutyric acid (GABA). We concentrate here on the major adult isoform, the α(1)β(2)γ(2) GABA(A) receptor. The classical binding pocket for benzodiazepines is located in a subunit cleft between α(1) and γ(2) subunits in a position homologous to the agonist binding site for GABA that is located between β(2) and α(1) subunits. We review here approaches to this picture. In particular, point mutations were performed in combination with subsequent analysis of the expressed mutant proteins using either electrophysiological techniques or radioactive ligand binding assays. The predictive power of these methods is assessed by comparing the results with the predictions that can be made on the basis of the recently published crystal structure of the acetylcholine binding protein that shows homology to the N-terminal, extracellular domain of the GABA(A) receptor. In addition, we review an approach to the question of how the benzodiazepine ligands are positioned in their binding pocket. We also discuss a newly postulated modulatory site for benzodiazepines at the α(1)/β(2) subunit interface, homologous to the classical benzodiazepine binding pocket.