67 resultados para glucose metabolism
Resumo:
It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.Molecular Psychiatry advance online publication, 8 December 2015; doi:10.1038/mp.2015.174.
Resumo:
The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.
Resumo:
Hypoglycemia is a characteristic condition of early lactation dairy cows and is subsequently dependent on, and may affect, metabolism in the liver. The objective of the present study was to investigate the effects of induced hypoglycemia, maintained for 48 h, on metabolic parameters in plasma and liver of mid-lactation dairy cows. The experiment involved 3 treatments, including a hyperinsulinemic hypoglycemic clamp (HypoG, n=6) to obtain a glucose concentration of 2.5 mmol/L, a hyperinsulinemic euglycemic clamp (EuG, n=6) in which the effect of insulin was studied, and a control treatment with a 0.9% saline solution (NaCl, n=6). Blood samples for measurements of insulin, metabolites, and enzymes were taken at least once per hour. Milk yield was recorded and milk samples were collected before and after treatment. Liver biopsies were obtained before and after treatment to measure mRNA abundance by real-time, quantitative reverse transcription-PCR of 12 candidate genes involved in the main metabolic pathways. Milk yield decreased in HypoG and NaCl cows, whereas it remained unaffected in EuG cows. Energy-corrected milk yield (kg/d) was only decreased in HypoG cows. In plasma, concentration of beta-hydroxybutyrate decreased in response to treatment in EuG cows and was lower (0.41+/-0.04 mmol/L) on d 2 of the treatment compared with that in HypoG and NaCl cows (on average 0.61+/-0.03 mmol/L, respectively). Nonesterified fatty acids remained unaffected in all treatments. In the liver, differences between treatments for their effects were only observed in case of mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and glucose-6-phosphatase (G6PC). In HypoG, mRNA abundance of PEPCKm was upregulated, whereas in EuG and NaCl cows, it was downregulated. The EuG treatment downregulated mRNA expression of G6PC, a marked effect compared with the unchanged transcript expression in NaCl. The mRNA abundance of the insulin receptor remained unaffected in all treatments, and no significant treatment differences were observed for genes related to lipid metabolism. In conclusion, low glucose concentrations in dairy cows affect liver metabolism at a molecular level through upregulation of PEPCKm mRNA abundance. Metabolic regulatory events in the liver are directed, apart from hormones, by the level of metabolites, either in excess (e.g., free fatty acids) or in shortage (e.g., glucose).
Resumo:
Postprandial metabolism is impaired in patients with type 2 diabetes (T2Dm). Two thiazolidinediones pioglitazone (PGZ) and rosiglitazone (RGZ) have similar effects on glycaemic control but differ in their effects on fasting lipids. This study investigated the effects of RGZ and PGZ on postprandial metabolism in a prospective, randomized crossover trial.
Resumo:
OBJECT: Severe traumatic brain injury (TBI) imposes a huge metabolic load on brain tissue, which can be summarized initially as a state of hypermetabolism and hyperglycolysis. In experiments O2 consumption has been shown to increase early after trauma, especially in the presence of high lactate levels and forced O2 availability. In recent clinical studies the effect of increasing O2 availability on brain metabolism has been analyzed. By their nature, however, clinical trauma models suffer from a heterogeneous injury distribution. The aim of this study was to analyze, in a standardized diffuse brain injury model, the effect of increasing the fraction of inspired O2 on brain glucose and lactate levels, and to compare this effect with the metabolism of the noninjured sham-operated brain. METHODS: A diffuse severe TBI model developed by Foda and Maramarou, et al., in which a 420-g weight is dropped from a height of 2 m was used in this study. Forty-one male Wistar rats each weighing approximately 300 g were included. Anesthesized rats were monitored by placing a femoral arterial line for blood pressure and blood was drawn for a blood gas analysis. Two time periods were defined: Period A was defined as preinjury and Period B as postinjury. During Period B two levels of fraction of inspired oxygen (FiO2) were studied: air (FiO2 0.21) and oxygen (FiO2 1). Four groups were studied including sham-operated animals: air-air-sham (AAS); air-O2-sham (AOS); air-air-trauma (AAT); and air-O2-trauma (AOT). In six rats the effect of increasing the FiO2 on serum glucose and lactate was analyzed. During Period B lactate values in the brain determined using microdialysis were significantly lower (p < 0.05) in the AOT group than in the AAT group and glucose values in the brain determined using microdialysis were significantly higher (p < 0.04). No differences were demonstrated in the other groups. Increasing the FiO2 had no significant effect on the serum levels of glucose and lactate. CONCLUSIONS: Increasing the FiO2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.
Resumo:
INTRODUCTION: Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. METHODS: In 69 patients with severe traumatic brain injury (TBI), cerebral metabolism was monitored by assessing changes in arterial and jugular venous blood at normocarbia (partial arterial pressure of carbon dioxide (paCO2) 4.4 to 5.6 kPa), normoxia (partial arterial pressure of oxygen (paO2) 9 to 20 kPa), stable haematocrit (27 to 36%), brain temperature 35 to 38 degrees C, and cerebral perfusion pressure (CPP) 70 to 90 mmHg. This resulted in a total of 43,896 values for glucose uptake, lactate release, oxygen extraction ratio (OER), carbon dioxide (CO2) and bicarbonate (HCO3) production, jugular venous oxygen saturation (SjvO2), oxygen-glucose index (OGI), lactate-glucose index (LGI) and lactate-oxygen index (LOI). Arterial blood glucose concentration-dependent influence was determined retrospectively by assessing changes in these parameters within pre-defined blood glucose clusters, ranging from less than 4 to more than 9 mmol/l. RESULTS: Arterial blood glucose significantly influenced signs of cerebral metabolism reflected by increased cerebral glucose uptake, decreased cerebral lactate production, reduced oxygen consumption, negative LGI and decreased cerebral CO2/HCO3 production at arterial blood glucose levels above 6 to 7 mmol/l compared with lower arterial blood glucose concentrations. At blood glucose levels more than 8 mmol/l signs of increased anaerobic glycolysis (OGI less than 6) supervened. CONCLUSIONS: Maintaining arterial blood glucose levels between 6 and 8 mmol/l appears superior compared with lower and higher blood glucose concentrations in terms of stabilised cerebral metabolism. It appears that arterial blood glucose values below 6 and above 8 mmol/l should be avoided. Prospective analysis is required to determine the optimal arterial blood glucose target in patients suffering from severe TBI.
Resumo:
In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.
Resumo:
In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.
Resumo:
Consumption of simple carbohydrates has markedly increased over the past decades, and may be involved in the increased prevalence in metabolic diseases. Whether an increased intake of fructose is specifically related to a dysregulation of glucose and lipid metabolism remains controversial. We therefore compared the effects of hypercaloric diets enriched with fructose (HFrD) or glucose (HGlcD) in healthy men. Eleven subjects were studied in a randomised order after 7 d of the following diets: (1) weight maintenance, control diet; (2) HFrD (3.5 g fructose/kg fat-free mass (ffm) per d, +35 % energy intake); (3) HGlcD (3.5 g glucose/kg ffm per d, +35 % energy intake). Fasting hepatic glucose output (HGO) was measured with 6,6-2H2-glucose. Intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured by 1H magnetic resonance spectroscopy. Both fructose and glucose increased fasting VLDL-TAG (HFrD: +59 %, P < 0.05; HGlcD: +31 %, P = 0.11) and IHCL (HFrD: +52 %, P < 0.05; HGlcD: +58 %, P = 0.06). HGO increased after both diets (HFrD: +5 %, P < 0.05; HGlcD: +5 %, P = 0.05). No change was observed in fasting glycaemia, insulin and alanine aminotransferase concentrations. IMCL increased significantly only after the HGlcD (HFrD: +24 %, NS; HGlcD: +59 %, P < 0.05). IHCL and VLDL-TAG were not different between hypercaloric HFrD and HGlcD, but were increased compared to values observed with a weight maintenance diet. However, glucose led to a higher increase in IMCL than fructose.
Resumo:
Hypopituitarism with adult-onset growth hormone deficiency (GHD) is associated with increased cardiovascular morbidity and mortality due to premature and progressive atherosclerosis. An underlying cause of atherosclerosis is increased insulin resistance. Elevated fasting and postprandial glucose and lipid levels may contribute to premature atherosclerosis. We studied effects of growth hormone replacement (GHRT) on fasting and postprandial metabolic parameters as well as on insulin sensitivity in patients with adult-onset GHD.
Resumo:
The decreased incidence of cardiovascular disease in premenopausal women has been attributed, at least partially, to protective effects of estrogens. However, premenopausal women with diabetes mellitus are no longer selectively protected. High-glucose (HG) conditions have previously been shown to abolish the antimitogenic effects of 17β-estradiol (E(2)) in vascular smooth muscle cells (VSMCs).
Resumo:
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.
Resumo:
Gastrointestinal peptide hormone receptors overexpressed in neuroendocrine tumors (NET), such as somatostatin or glucagon-like peptide-1 (GLP-1) receptors, are used for in vivo tumor targeting. Unfortunately, not all NET express these receptors sufficiently.
Resumo:
CE-ESI multistage IT-MS (CE-MS(n), n < or = 4) and computer simulation of fragmentation are demonstrated to be effective tools to detect and identify phase I and phase II metabolites of hydromorphone (HMOR) in human urine. Using the same CE conditions as previously developed for the analysis of urinary oxycodone and its metabolites, HMOR and its phase I metabolites produced by N-demethylation, 6-keto-reduction and N-oxidation and phase II conjugates of HMOR and its metabolites formed with glucuronic acid, glucose, and sulfuric acid could be detected in urine samples of a patient that were collected during a pharmacotherapy episode with daily ingestion of 48 mg of HMOR chloride. The CE-MS(n) data obtained with the HMOR standard, synthesized hydromorphol and hydromorphone-N-oxide, and CYP3A4 in vitro produced norhydromorphone were employed to identify the metabolites. This approach led to the identification of previously unknown HMOR metabolites, including HMOR-3O-glucide and various N-oxides, structures for which no standard compounds or mass spectra library data were available. Furthermore, the separation of alpha- and beta-hydromorphol, the stereoisomers of 6-keto-reduced HMOR, was achieved by CE in the presence of the single isomer heptakis(2,3-diacetyl-6-sulfato)-beta-CD. The obtained data indicate that the urinary excretion of alpha-hydromorphol is larger than that of beta-hydromorphol.
Resumo:
OBJECTIVE: Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury. We measured oxygen consumption (VO2) to determine what effects glucose, lactate, oxygen, and the combination of lactate and oxygen have on mitochondrial respiration in both injured and uninjured rat brain tissue. METHODS: Anesthetized Sprague-Dawley rats were intubated and ventilated with either 0.21 or 1.0 fraction of inspired oxygen (FIO2). Brain tissue from acute sham animals was subjected in vitro to 1.1 mM, 12 mM and 100 mM concentrations of glucose and L-lactate. In another group, injury (fluid percussion injury of 2.5 +/- 0.02 atmospheres) was induced over the left hemisphere. The VO2 of mug amounts of brain tissues were measured in a microrespirometry system (Cartesian diver). RESULTS: The VO2 was found to be independent of glucose concentrations, but dose-dependent for lactate. Moreover, the lactate dependent VO2s were all significantly higher than those generated by glucose. Injured rats on FIO2 0.21 had brain tissue VO2 rates that were significantly lower than those of shams or preinjury levels. In injured rats treated with FIO2 1.0, the reduction in VO2 levels was prevented. Injured rats that received an intravenous infusion of 100 mM lactate had VO2 rates that were significantly higher than those obtained with FIO2 1.0. Combined treatment further boosted the lactate generated VO2 rates by approximately 15%. CONCLUSION: Glucose sustains mitochondrial respiration at a low level "fixed" rate because, despite increasing its concentration nearly 100-fold, it cannot up-regulate VO2 after fluid percussion injury. Lactate produces a dose-dependent VO2 response, possibly enabling mitochondria to meet the increased energy needs of the injured brain.