94 resultados para fusion
Resumo:
Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. METHODS: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with (99m)Tc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. RESULTS: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P<0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P=0.004) and involvement of diagonal branches (P=0.01). CONCLUSION: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.
Alefacept (lymphocyte function-associated molecule 3/IgG fusion protein) treatment for atopic eczema
Resumo:
OBJECTIVES: To evaluate the feasibility of fusion imaging compound tomography (FICT) of CT/MRI and single photon emission tomography (SPECT) versus planar scintigraphy only (plSc) in pre-surgical staging for vulvar cancer. MATERIALS AND METHODS: Analysis of consecutive patients with vulvar cancer who preoperatively underwent sentinel scintigraphy (planar and 3D-SPECT imaging) and CT or MRI. Body markers were used for exact anatomical co-registration and fusion datasets were reconstructed using SPECT and CT/MRI. The number and localisation of all intraoperatively identified and resected sentinel lymph nodes (SLN) were compared between planar and 3D fusion imaging. RESULTS: Twenty six SLN were localized on planar scintigraphy. Twelve additional SLN were identified after SPECT and CT/MRI reconstruction, all of them were confirmed intraoperatively. In seven cases where single foci were identified at plSc, fusion imaging revealed grouped individual nodes and five additional localisations were discovered at fusion imaging. In seven patients both methods identified SLN contra lateral to the primary tumor site, but only fusion imaging allowed to localise iliac SLN in four patients. All SLN predicted on fusion imaging could be localised and resected during surgery. CONCLUSIONS: Fusion imaging using SPECT and CT/MRI can detect SLN in vulvar cancer more precisely than planar imaging regarding number and anatomical localisation. FICT revealed additional information in seven out of ten cases (70%).
Resumo:
OBJECTIVE: The objective of the study was to evaluate tissue reactions such as bone genesis, cartilage genesis and graft materials in the early phase of lumbar intertransverse process fusion in a rabbit model using computed tomography (CT) imaging with CT intensity (Hounsfield units) measurement, and to compare these data with histological results. MATERIALS AND METHODS: Lumbar intertransverse process fusion was performed on 18 rabbits. Four graft materials were used: autograft bone (n = 3); collagen membrane soaked with recombinant human bone morphogenetic protein-2 (rhBMP-2) (n = 5); granular calcium phosphate (n = 5); and granular calcium phosphate coated with rhBMP-2 (n = 5). All rabbits were euthanized 3 weeks post-operatively and lumbar spines were removed for CT imaging and histological examination. RESULTS: Computed tomography imaging demonstrated that each fusion mass component had the appropriate CT intensity range. CT also showed the different distributions and intensities of bone genesis in the fusion masses between the groups. Each component of tissue reactions was identified successfully on CT images using the CT intensity difference. Using CT color mapping, these observations could be easily visualized, and the results correlated well with histological findings. CONCLUSIONS: The use of CT intensity is an effective approach for observing and comparing early tissue reactions such as newly synthesized bone, newly synthesized cartilage, and graft materials after lumbar intertransverse process fusion in a rabbit model.