34 resultados para forage maize


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In monocotyledonous plants, 1,4-benzoxazin-3-ones, also referred to as benzoxazinoids or hydroxamic acids, are one of the most important chemical barriers against herbivores. However, knowledge about their behavior after attack, mode of action and potential detoxification by specialized insects remains limited. We chose an innovative analytical approach to understand the role of maize 1,4-benzoxazin-3-ones in plant–insect interactions. By combining unbiased metabolomics screening and simultaneous measurements of living and digested plant tissue, we created a quantitative dynamic map of 1,4-benzoxazin-3-ones at the plant–insect interface. Hypotheses derived from this map were tested by specifically developed in vitro assays using purified 1,4-benzoxazin-3-ones and active extracts from mutant plants lacking 1,4-benzoxazin-3-ones. Our data show that maize plants possess a two-step defensive system that effectively fends off both the generalist Spodoptera littoralis and the specialist Spodoptera frugiperda. In the first step, upon insect attack, large quantities of 2-β-d-glucopyranosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-Glc) are formed. In the second step, after tissue disruption by the herbivores, highly unstable 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA) is released by plant-derived β-glucosidases. HDMBOA acts as a strong deterrent to both S. littoralis and S. frugiperda. Although constitutively produced 1,4-benzoxazin-3-ones such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) are detoxified via glycosylation by the insects, no conjugation of HDMBOA in the insect gut was found, which may explain why even the specialist S. frugiperda has not evolved immunity against this plant defense. Taken together, our results show the benefit of using a plant–insect interface approach to elucidate plant defensive processes and unravel a potent resistance mechanism in maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of analyzing their protective function against chilling-induced injury, the pools of glutathione and its precursors, cysteine (Cys) and gamma -glutamyl-Cys, were increased in the chilling-sensitive maize (Zea mays) inbred line Penjalinan using a combination of two herbicide safeners. Compared with the controls, the greatest increase in the pool size of the three thiols was detected in the shoots and roots when both safeners were applied at a concentration of 5 muM. This combination increased the relative protection from chilling from 50% to 75%. It is interesting that this increase in the total glutathione (TG) level was accompanied by a rise in glutathione reductase (GR; EC 1.6.4.2) activity. When the most effective safener combination was applied simultaneously with increasing concentrations of buthionine sulfoximine, a specific inhibitor of glutathione synthesis, the total gamma -glutamyl-Cys and TG contents and GR activity were decreased to very low levels and relative protection was lowered from 75% to 44%. During chilling, the ratio of reduced to oxidized thiols first decreased independently of the treatments, but increased again to the initial value in safener-treated seedlings after 7 d at 5 degreesC. Taking all results together resulted in a linear relationship between TG and GR and a biphasic relationship between relative protection and GR or TG, thus demonstrating the relevance of the glutathione levels in protecting maize against chilling-induced injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of glutathione (GSH) in protecting plants from chilling injury was analyzed in seedlings of a chilling-tolerant maize (Zea mays L.) genotype using buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamylcysteine (gamma EC) synthetase, the first enzyme of GSH synthesis. At 25 degrees C, 1 mM BSO significantly increased cysteine and reduced GSH content and GSH reductase (GR: EC 1.6.4.2) activity, but interestingly affected neither fresh weight nor dry weight nor relative injury. Application of BSO up to 1 mM during chilling at 5 degrees C reduced the fresh and dry weights of shoots and roots and increased relative injury from 10 to almost 40%. Buthionine sulfoximine also induced a decrease in GR activity of 90 and 40% in roots and shoots, respectively. Addition of GSH or gamma EC together with BSO to the nutrient solution protected the seedlings from the BSO effect by increasing the levels of GSH and GR activity in roots and shoots. During chilling, the level of abscisic acid increased both in controls and BSO-treated seedlings and decreased after chilling in roots and shoots of the controls and in the roots of BSO-treated seedlings, but increased in their shoots. Taken together, our results show that BSO did not reduce chilling tolerance of the maize genotype analyzed by inhibiting abscisic acid accumulation but by establishing a low level of GSH. which also induced a decrease in GR activity.