36 resultados para fold and thrust belt
Resumo:
The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.
Resumo:
The co-occurrence of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones, and stratospheric potential vorticity (PV) streamers, indicators for breaking Rossby waves on the tropopause, is investigated for a 21-yr period in the Northern Hemisphere using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data. WCB outflows and PV streamers are respectively identified as two- and three-dimensional objects and tracked during their life cycle. PV streamers are more frequent than WCB outflows and nearly 15% of all PV streamers co-occur with WCBs during their life cycle, whereas about 60% of all WCB outflows co-occur with PV streamers. Co-occurrences are most frequent over the North Atlantic and North Pacific in spring and winter. WCB outflows are often located upstream of the PV streamers and form earlier, indicating the importance of diabatic processes for downstream Rossby wave breaking. Less frequently, PV streamers occur first, leading to the formation of new WCBs.
Resumo:
We analyze transverse thrust in the framework of Soft Collinear Effective Theory and obtain a factorized expression for the cross section that permits resummation of terms enhanced in the dijet limit to arbitrary accuracy. The factorization theorem for this hadron-collider event-shape variable involves collinear emissions at different virtualities and suffers from a collinear anomaly. We compute all its ingredients at the one-loop order, and show that the two-loop input for next-to-next-to-leading logarithmic accuracy can be extracted numerically, from existing fixed-order codes.
Resumo:
To reconstruct the vegetation history of the Upper Engadine, continuous sediment cores covering the past 11 800 years from Lej da Champfer and Lej da San Murezzan (Upper Engadine Valley, c. 1800 m a.s.l., southeastern Switzerland) have been analysed for pollen and plant macrofossils. The chronologies of the cores are based on 16 and 22 radiocarbon dates, respectively. The palaeobotanical records of both lakes are in agreement for the Holocene, but remarkable differences exist between the sites during the period 11 100 to 10 500 cal. BP, when Lej da Champfer was affected by re-sedimentation processes. Macrofossil data suggest that Holocene afforestation began at around 11400 cal. BP. A climatic deterioration, the Preboreal Oscillation, stopped and subsequently delayed the establishment of trees until c. 11000 cal. BP, when first Betula, then Pinus sylvestrislmugo, then Larix 300 years later, and finally Pinus cembra expanded within the lake catchment. Treeline was at c. 1500 m during the Younger Dryas (12 542- 11 550 cal. BP) in the Central Alps. Our results, along with other macrofossil studies from the Alps, suggest a nearly simultaneous afforestation (e.g., by Pinus sylvestris in the lower subalpine belt) between 1500 and 2340 m a.s.l. at around 11 400 to 11 300 cal. BP. We suggest that forest-limit species (e.g., Pinus cembra, Larix decidua) could expand faster at today's treeline (c. 2350 m a.s.l.), than 550 m lower. Earlier expansions at higher altitudes probably resulted from reduced competition with low-altitude trees (e.g. Pinus sylvestris) and herbaceous species. Comparison with other proxies such as oxygen isotopes, residual A14C, glacier fluctuations, and alpine climatic cooling phases suggests climatic sensitivity of vegetation during the early Holocene.